Elementary Functions in TBA

JUNJI SUZUKI (SHIZUOKA UNIVERSITY)
June 2014 Phyzikzentrum Bad Honnef

Aim how to interpret and generalize the result obtained by
P. Fendley (hep-th 9906114) in view of ODE/IM

Thermodynamic Bethe Ansatz Equation

Gaudin, Takahashi, M. Suzuki, Al Zamolodchikov

Powerful machinery in $\left\{\begin{array}{l}\text { ID quantum system at finite } T \\ 1+1 \text { D QFT at finite } L\end{array}\right.$

Inpat
S matrix
physical basis (strings)
\Rightarrow
Coupled nonlinear integral equations

Fusion relations

Numerical Study possible
Nonlinearity ~ Analytic Solution difficult
$\mathrm{N}=2$ SUSY in 2D : TBA [Fendley-Intriligator ' 9_{2}]

$$
2 \theta(\theta)=\varepsilon(\theta)+\int_{-\infty}^{\infty} \frac{\ln \left(1+\eta^{2}(\theta)\right.}{d\left(\theta-\theta^{\prime}\right)} \frac{d \theta^{\prime}}{2 \pi} \quad 2 \theta(\theta)=z c h \theta
$$

$$
\eta(\theta)=\int_{-\infty}^{\infty} \frac{e^{-\varepsilon\left(\theta^{\prime}\right)}}{\left(h\left(\theta-\theta^{\prime}\right)\right.} \frac{d \theta^{\prime}}{2 \pi}
$$

Fact [Fendley'99]
explicit solution
$2 \theta(\theta)=e^{\theta}$

$$
\begin{aligned}
& e^{-\varepsilon(\theta)}=-2 \pi \frac{d}{d z}\left(A_{i} \mid z\right)^{2} \\
& z=\left(\frac{3}{4} e^{\theta}\right)^{\frac{2}{3}} \\
& \left.\eta|\theta|=-2 \pi \frac{d}{d z}\left[A_{i} \left\lvert\, z e^{\frac{\pi}{3} i}\right.\right) A_{i}\left(z e^{-\frac{\pi}{3} i}\right)\right]
\end{aligned}
$$

Fendley's Proof
Use results by $\left\{\begin{array}{l}\text { McCoy Tracy Wu } \\ \text { Al Zamolodochikov } \\ \text { Tracy-Widom }\end{array}\right.$ on III
theorem [TW]
for integral operator $\quad K\left(\theta, \theta^{\prime}\right)=2 \frac{E(\theta) E(\theta)}{e^{\theta}+e^{\prime}} \quad E(\theta):=e^{\theta / 2-D(\theta)}$
Define $\Theta_{+}=e^{-\frac{2 \theta}{3}}(I+K)^{-1} E(\theta) \quad \partial_{-}=e^{-\theta / 3}(I-K)^{-1} E$
then $e^{-\varepsilon(\theta)}=4 \pi Q_{+}(\theta) \theta_{-}(\theta)$

$$
\text { Fendley's solution } \quad \Rightarrow Q_{+}=A_{i}(z) \quad Q_{-}=A_{i}^{\prime}(z)
$$

So check via $(I+K) e^{2 \theta / 3} \theta_{+}=E(\theta)$

Any Simpler Way ?

Use ODE/IM

Plan of the talk

1. brief review on ODE/IM

2 Fendley-Intriligator TBA
3. ODE/IM interpretation

4 Generalization

5 Outlook

Brief review on ODE/IM

$$
\left(-\frac{d^{2}}{d z^{2}}+V(z, E)\right) \psi(z, E)=0
$$

Consider generally $\quad Z \in \mathbb{R} \longrightarrow z \in \mathbb{C}$
When $Z=\infty \quad=$ irregular singularity
\Rightarrow (1) plane is divided into sectors $\quad S_{k} \rightarrow\left(\phi_{k}, \psi_{k}\right)$
Fundamental set of solutions
Connection problem relate FSS of neighbouring sectors

Stokes phenomenon
Sudden discontinuous change in ψ as one crosses boarder

The simplest case $(V(x)=x) \quad \tau$ is simply 1
other cases τ is nontrivial

The simplest case

$$
V(x)=x .
$$

explicit solution is known in this case (= Airy function)

$$
\psi(x)=\int_{e} d t e^{+\left(t^{3} / 3-t x\right)} \quad \text { for arbitrary } e
$$

Choices of Contours
$t]$

ψ_{i} for C_{i}
then $\psi_{0}=\psi_{-1}+\psi_{1} \quad=\quad \quad=111$

Dorey-Tateo-Voros potential

$$
V(z, E)=Z^{2 \alpha}-E
$$

explicit ψ is not available but \exists good property of ODE

$$
k \in \mathbb{Z}_{\alpha+1}
$$

Definition

$$
\varphi(x)=A \text { solution } \sim x^{-\frac{\alpha}{2}} \exp \left(-\frac{x^{\alpha+1}}{\alpha+1}\right) \text { in } \delta_{0}
$$

Lemma I φ_{k} solves Schroedinger equation

$$
\begin{aligned}
& \left.\varphi_{k} \mid x, E\right) \equiv \omega^{k / 2} \varphi\left(\omega^{-k} x, \Omega^{-k} E\right) \sqrt{\frac{1}{2 i}} \\
& \omega \equiv \exp \left(\frac{\pi i}{\alpha+1}\right) \quad \Omega=\exp \left(\frac{2 \alpha}{\alpha+1} \pi i\right)
\end{aligned}
$$

Connection problem
FSS in $\delta_{k}\left\{\begin{array}{lll}\varphi_{k} & \text { sub-dominant } & \varphi_{r} \\ \varphi_{k+1} & \text { dominant } & \varphi_{d}\end{array}\right.$
Elementary Connection problem ($\left.S_{0}, \&_{1}\right)$

$$
\tau(E) \varphi_{1}=\varphi_{0}+\varphi_{2} \quad \text { or } \quad\left(\varphi_{0} \quad \varphi_{1}\right)=\left(\begin{array}{ll}
\varphi_{1} & \varphi_{2}
\end{array}\right)\left(\begin{array}{cc}
\tau(I) & 1 \\
-1 & 0
\end{array}\right)
$$

generalized Connection problem

$$
\left(\begin{array}{ll}
\varphi_{1} & \varphi_{1} \\
\varphi_{0}^{\prime} & \varphi_{1}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
\varphi_{k} & \varphi_{k+1} \\
\varphi_{k}^{\prime} & \varphi_{k+1}^{\prime}
\end{array}\right) \quad M_{k}(E)
$$

Generalized connection = T/Y -system
proposition
$M_{k}(E)$ is represented in the form

$$
M_{k}(E)=\left(\begin{array}{cc}
\tau_{k}(E) & \tau_{k-1}\left(E \Omega^{-1}\right) \\
-\tau_{k-1}(E) & -\tau_{k-2}\left(E \Omega^{-1}\right)
\end{array}\right) \quad \text { with } \quad \tau_{0}=1 \quad \tau_{-1}=0
$$

$\downarrow \tau_{k}$ has a Wronskian representation $\tau_{k}(E)=\frac{W\left[\begin{array}{ll}\varphi_{0} & \varphi_{k+1}\end{array}\right]}{W\left[\begin{array}{ll}\varphi_{k} & \varphi_{k+1}\end{array}\right]}$

$$
T_{k}\left(E \Omega^{1 / 2}\right) T_{k}\left(E \Omega^{-1 / 2}\right)=1+T_{k-1}(E) \bar{T}_{k+1}(F)
$$

\downarrow Kluemper-Pearce transformation $\quad Y_{k}(E):=T_{k-1}(E) T_{k+1}(E)$

$$
Y_{k}\left(E \Omega^{1 / 2}\right) Y_{k}\left(E \Omega^{-1 / 2}\right)=\left(1+Y_{k+1}(E)\right)\left(1+Y_{k-1}(E)\right)
$$

ODE/IM correspondence

Elementary connection problem \simeq Baxter's TQ relation
$T \sim$ Stokes multiplier
Q ~ wave function
(generalized) Stokes multipliers \rightarrow solution to Y -system
2. Fendley - Intriligator TBA

Problem gluing topological and anti-topological theories
Cecotti-Vafa

Choose $\quad W\left(X_{i}\right)=\frac{X_{i}{ }^{3}}{3}-t X_{i} \Rightarrow$ (the simplest case of)
$\mathrm{c}=0$ case of $\mathrm{ODE} / \mathrm{IM}$

$$
\begin{aligned}
V(x, E)= & x^{2 \alpha}-E \\
& \Rightarrow c=1-\frac{6 \alpha^{2}}{\alpha+1}=0 \Rightarrow \alpha=\frac{1}{2}
\end{aligned}
$$

Dorey-Tateo solution

$$
\begin{aligned}
& T_{1}(E)=\Omega^{\frac{1}{2}} \frac{Q\left(E \Omega^{-2}\right)}{\partial(E)}+\Omega^{-\frac{1}{2}} \frac{Q\left(E \Omega^{2}\right)}{Q(E)} \\
& Q(E)=A_{i}(E)
\end{aligned}
$$

Connection rule of Airy function $\quad A_{i}(E)=\Omega A_{1}\left(E \Omega^{-2}\right)+\Omega^{-1} A_{i}\left(E \Omega^{2}\right)$

$$
\nRightarrow \quad T_{1}=1 \quad T_{2}=0
$$

Only trivial Y naively.
h-deformation

Idea (essentially due to Fendley)
Deform dressed Vacuum Form

$$
\begin{aligned}
& T_{1}(E)=\xi \frac{\partial\left(E \Omega^{-2}\right)}{\partial(E)}+\xi^{-1} \frac{\partial\left(E \Omega^{2}\right)}{\partial(E)} \\
& \xi=e^{\left(\frac{\pi-h}{3}\right)_{n} \quad h \rightarrow 0 \quad \text { deformation by } h}
\end{aligned}
$$

or $E=e^{2 / 3 \theta}$

$$
T_{1}|\theta|=\xi \frac{Q\left(\theta-\frac{\pi}{2} i\right)}{\theta(\theta)}+\xi^{-1} \frac{\partial\left(\theta+\frac{\pi}{2} i\right)}{\partial(\theta)}
$$

and seek for the connection to Fendley's solution

Advantage
Drawback
hoO we know explicit
$h \neq 0$ we do not Know

T and Q
T and Q

h deformation and Fendley's Solution

We will argue

- TBA can be analyzed order by order in h
- $N=2$ SUSY TBA =first nontrivial eq in h
- Solution is fixed only by $O\left(h^{0}\right)$ information

We know everything
closed TBA
before h-deformation
after h-deformation

$$
\begin{array}{ll}
T_{1}^{\text {Airy }} T_{1}^{A l r y}=1 \\
T_{2}^{\text {Airy }}=0
\end{array} \quad \Longrightarrow \begin{aligned}
& T_{1}\left(\theta+\frac{\pi_{i}}{2}\right) T_{1}\left(\theta-\frac{\pi_{i}}{2}\right)=1+T_{2}(\theta) \\
& T_{2}\left(\theta+\frac{\pi}{2}\right) T_{2}\left(\theta-\frac{\pi}{2} \wedge\right)=1+T_{1}(\theta) T_{3}(\theta)
\end{aligned}
$$

however

$$
T_{3}(\theta)=3^{3}+\xi^{-3}+T_{1}(\theta)
$$

\Rightarrow Functional relations close among T_{1} and T_{2} (BLK)

+ Analyticity Assumption $=$ closed TBA eq

$$
\begin{align*}
& \ln T_{1}(\theta)=\int \frac{d \theta^{\prime}}{2 \pi} \ln \left(1+T T_{2}\left(\theta^{\prime}\right)\right) \frac{1}{c h\left(\theta-\theta^{\prime}\right)} \\
& \ln T_{2}(\theta)=D(\theta)+\int \frac{d \theta^{\prime}}{2 \pi} \ln \left(1+\xi^{3} T\left(\theta^{\prime}\right)\right)\left(1+\xi^{-3} T_{1}\left(\theta^{\prime}\right)\right) \frac{1}{\ln \left(\theta-\theta^{\prime}\right)}-b
\end{align*}
$$

$N=2$ SUSY TBA as $0(h)$ equation

$$
\text { As } T_{1}^{h=0}(\theta)=T_{1}^{\text {Arr }}=1 \quad T_{2}^{h=0}(\theta)=T_{2}^{\text {Airy }}=0
$$

So reasonable to assume

$$
\begin{aligned}
& T_{1}=e^{-\varepsilon_{t}}=e^{h \eta(\theta)}=1+h \eta(\theta)+O\left(h^{2}\right) \\
& T_{2}=e^{-\varepsilon_{1}}=h e^{-\varepsilon^{\prime}(\theta)}+o\left(h^{2}\right)
\end{aligned}
$$

(a) $\xrightarrow{O(h)} \eta(\theta)=\int \frac{d \theta^{\prime}}{2 \pi} \frac{1}{c h\left(\theta-\theta^{\prime}\right)} e^{-\varepsilon(\theta)}$
(b)

$$
\begin{aligned}
& \ln h-\varepsilon(\theta)=D(\theta)+\int \frac{d \theta^{\prime}}{2 \pi} \frac{1}{\ln \left(\theta \theta^{\prime}\right.}, \frac{\ln \left(1-e^{h\left(i+\eta_{1}(\theta)\right)}\right)\left(1-e^{h(\eta(\theta)-i)}\right)}{1 \prime} \\
& \ln \gamma^{\prime}\left(1+\eta^{2}\right) \\
& \rightarrow \varepsilon(\theta)=-D(\theta)-\int \frac{d \theta^{\prime}}{2 \pi} \frac{1}{\left(h\left(\theta-\theta^{\prime}\right)\right.} \ln \left(1+\eta^{2}\left(\theta^{\prime}\right)\right) \\
& N=2 \text { TBA recovered ! }
\end{aligned}
$$

(quantum) Wronskian and Solution to T-system

BLZ. quantum Wronskian

$$
\begin{aligned}
\left.2 \sin 2 \pi p T_{j} \mid \lambda\right)=e^{2 \pi_{c}(j+1) p} A_{+}\left(\lambda \Omega^{\frac{j+1}{2}} p\right) A_{-}\left(\lambda \Omega^{-\frac{j+1}{2}}, p\right) & j=0,1,2 \\
& \left.\left.-e^{-2 \pi i(j+1) p} A_{+}\left(\lambda \Omega_{1}^{-\frac{j+1}{2}} p\right) A_{-} \right\rvert\, \lambda \Omega^{\frac{j+1}{2}} p\right)
\end{aligned} \quad P=\frac{1}{6}-\frac{h}{6 \pi}
$$

$$
\begin{aligned}
A_{ \pm}(\lambda) & \left.\left.=\lambda^{\mp \frac{2 P}{\beta^{2}}} Q_{ \pm} \right\rvert\, \lambda\right) \\
& =\text { function of } \lambda^{2}(\alpha E)
\end{aligned}
$$

Dorey Tate solution $\quad(h=0)$

$$
\left.\left.A_{+} \left\lvert\, x \frac{1}{6}\right.\right)=C+A_{i}\left(\lambda^{2}\right), \left.A_{-}\left(\lambda \frac{1}{6}\right)=C_{-} \frac{d}{d z} A_{i} \right\rvert\, z\right)\left.\right|_{z=\lambda^{2}}
$$

Observation
By expanding both sides of quantum Wronskian, one easily obtains
Fendley's solution
$\frac{\partial A_{ \pm}}{\partial p}$ do not contribute
example: $j=2$ of $q-W r o n s k i a n ~ r e l a t i o n ~$

$$
\begin{aligned}
L H S=2 i \sin 2 \pi p T_{2} & =2 i\left(\sin \frac{\pi}{3}-\frac{h}{3} \cos \frac{\pi}{3}\right) h e^{-\varepsilon(\theta)} \\
& =2 i \sin \frac{\pi}{3} e^{-\varepsilon(\theta)} h+O\left(h^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { RHS }=\left.e^{h i}\left(A_{+}\left(\lambda q^{-3 / 2}\right) A_{-}\left(\lambda q^{3 / 2}\right)\right)\right|_{p=\frac{1}{6}}-e^{-h i}\left(\left.A_{+}\left(\lambda q^{3 / 2}\right) A_{-}\left(\lambda q^{-3 / 2}\right)\right|_{k=\frac{1}{6}}\right. \\
&-\frac{h}{6 \pi}\left[\frac{d}{d p} A_{+}\left(\lambda q^{-3 / 2}\right) A_{-}\left(\lambda q^{3 / 2}\right)-\frac{d}{q p} A_{+}\left(\lambda q^{3 / 2}\right) A_{-}\left(\lambda q^{-3 / 2}\right)\right] \\
& \downarrow \quad A_{+}(\lambda)=A_{+}\left(\lambda^{2}\right) \\
& 0!\quad q^{3}=1
\end{aligned}
$$

$$
\text { RHS }=\left.C_{+} C_{-} h_{i} \frac{d}{d x} A_{i}^{2}(x)\right|_{x=\lambda^{2}} \quad \begin{aligned}
e^{-\varepsilon(\theta)} & \left.\sim \frac{d}{d x} A_{i}^{2}(x)\right|_{x=\lambda^{2}} \\
& =-2 \pi \frac{d}{4 x} A_{i}^{2}(x) \\
x & =\left(\frac{3}{4} e^{\theta}\right)^{\frac{2}{3}}
\end{aligned}
$$

Observation
$W(x)=$ F-term potential $W_{1!}(X)=\frac{x^{3}}{3}-X$
in the above case
Relation between" Wave function" and potential

$$
A_{i}(t)=\int_{e} e^{W_{1}\left(\frac{x}{\sqrt{t}}\right)(\sqrt{t})^{3}} d x
$$

$N=2$ SUSY perturbation

Stokes multiplier (nontrivial)
New index

Any further generalizations?

$?$
$\mathrm{N}=2$ minimal model : Least relevant perturbation (Cecotti et al)

$$
W_{k}(X=2 \cos \theta)=\frac{2}{k+2} \cos (k+2) \theta
$$

TBA remains almost the same (2 independent functions for $\forall k$)

$$
\begin{array}{ll}
2 \emptyset(\theta)=\varepsilon(\theta)+\int_{-\infty}^{\infty} \frac{\ln \left(1+\eta^{2}(\theta)\right)}{d\left(\theta-\theta^{\prime}\right)} \frac{d \theta^{\prime}}{2 \pi} & 2 \forall|\theta|=z \operatorname{ch} \theta-\ln 2 \cos \frac{\pi}{k+2} \\
\eta(\theta)=\int \frac{e^{-\varepsilon\left(\theta^{\prime}\right)}}{\left(h\left(\theta-\theta^{\prime}\right)\right.} \frac{d \theta^{\prime}}{2 \pi} & \}(3,1)
\end{array}
$$

Define wave function

$$
\psi(t) \text { by }
$$

$$
\psi(t)=\int_{e} e^{W_{k}\left(\frac{x}{\sqrt{t}}\right)(\sqrt{t})^{k+2}} d x
$$

Fact

$$
\psi(t) \text { solves }\left[-\frac{d^{2}}{d t^{2}}+t^{k}\right] \psi(t)=0
$$

Explicit Solution

$$
\psi(t) \sim \sqrt{t} K_{\frac{1}{k+2}}\left(\frac{2}{k+2} t^{\frac{k+2}{2}}\right)
$$

Observation [Lukyanov, DDMST]

$$
\left[-\frac{d^{2}}{d t^{2}}+\left(t^{2 \alpha}-E\right)^{k}\right] \psi(t)=0
$$

$\leftrightarrow \quad$ ODE corresponding $S U / 2) k$ model $\quad \Omega=e^{\frac{2 \pi_{i}}{k+2}}$
Again $\quad \alpha=1 / 2$ case

T system $\quad T_{j}\left(E \Omega^{-1 / 2}\right) T_{j}\left(E \Omega^{1 / 2}\right)=1+T_{j+1}(E) T_{j-1}(E)$
before h-deformation

$$
\begin{aligned}
& \left(T_{j}^{(0)}\right)^{2}=1+T_{j+1}^{(0)} T_{j-1}^{(0)} \quad T=\text { numbers } \\
& T_{k+1}^{(0)}=0 \quad T_{k}^{(0)}=1 \\
& T_{j}^{(0)}=\sin \frac{(j+1) \pi}{k+2} / \sin \pi / k+2
\end{aligned}
$$

after h-deformation

$$
\mathrm{T}=\text { nontrivial functions }
$$

After h-deformation

$$
\begin{array}{ll}
Y_{j}=T_{j+1} T_{j-1} & \Omega^{\frac{k+1}{2}}=-1 \\
Y_{t}=T_{k} & \omega^{\frac{k+1}{2}}=-e^{-i h}
\end{array}
$$

$$
\left\{\begin{array}{l}
Y_{j}\left(E \Omega^{-1 / 2}\right) Y_{j}\left(E \Omega^{1 / 2}\right)=\left(1+Y_{j-1}\right)\left(1+Y_{j+1}\right) \quad 1 \leq j \leq k-1 \quad\left(Y_{0}=0\right) \\
Y_{k}\left(E \Omega^{-1 / 2}\right) Y_{k}\left(E \Omega^{1 / 2}\right)=\left(1+Y_{k-1}\right)\left(1+\omega^{\frac{k+2}{2}} Y_{t}\right)\left(1+\omega^{-\frac{k+2}{2}} Y_{t}\right) \\
Y_{t}\left(E \Omega^{-1 / 2}\right) Y_{t}\left(E \Omega^{1 / 2}\right)=1+Y_{k}
\end{array}\right.
$$

$\mathrm{k}+1$ independent functions $\longleftrightarrow 2$ independent functions in $\mathrm{N}=2$ TBA

TBA decomposes into 2 parts
As $\mathrm{h} \rightarrow 0$ reasonable to assume

$$
\begin{aligned}
\quad T_{j}(E)=T_{j}^{0}+h t_{j}(E)+o\left(h^{2}\right) \Rightarrow Y_{j}(E) & =Y_{j}^{0}+h y_{j}(E)+o\left(h^{2}\right) \\
Y_{t}(E) & =T_{k}(E)=1+h y_{t}(E) \\
\text { especially } \quad Y_{k}(E) & =h y_{k}(E)
\end{aligned}
$$

then the lowest order equations decouple into 2-parts

$$
\begin{aligned}
& -0-1 \geqslant \otimes 0_{0}^{R} \\
& \omega^{\frac{k+1}{2}}=-e^{-h i} \\
& \text { - } \underbrace{O\left(h^{2}\right)}_{0\left(E \Omega^{1 / 2}\right) Y_{k}\left(E \Omega^{-1 / 2}\right)}=\left(1+Y_{k-1}\right) \frac{\left(1+\omega^{\frac{k+1}{2}} Y_{t}\right)}{O(h)}(\underbrace{\left.1-1 \omega^{-\frac{k+1}{2}} Y_{t}\right)}_{O(h)} \\
& \rightarrow \quad y_{k}\left(E \Omega^{1 / 2}\right) y_{k}\left(E \Omega^{-1 / 2}\right)=\left(T_{k-1}^{()}\right)^{2}\left(1+y_{t}^{2}\right) \\
& \text { - } Y_{t}\left(E \Omega^{1 / 2}\right) Y_{t}\left(E \Omega^{-1 / 2)}\right. \\
& \left\{\begin{array}{l}
\text { recovers TBA } \\
\text { by Cecotti et al. }
\end{array}\right. \\
& \longrightarrow \quad y_{t}\left(E \Omega^{k}\right)+y_{t}\left(E \Omega^{-1 / 2}\right)=y_{k}(E)
\end{aligned}
$$

By expanding the both sides of quantum Wronskian w.r.t. h
\rightarrow explicit solution

$$
\left\{\begin{array}{l}
y_{k}(E) \propto \varphi(E) \varphi^{\prime}(E) \\
y_{t}(E) \propto \Omega^{-\frac{1}{2}} \varphi\left(E \Omega^{1 / 2}\right) \varphi^{\prime}\left(E \Omega^{-1 / 2}\right) \\
+\Omega^{1 / 2} \varphi\left(E \Omega^{-1 / 2}\right) \varphi\left(E \Omega^{1 / 2}\right)
\end{array}\right.
$$

$$
\varphi(t) \sim \sqrt{t} K \frac{1}{k+2}\left(\frac{2}{k+2} t^{\frac{k+2}{2}}\right)
$$

$$
\begin{aligned}
\partial(z \rightarrow 0) & =-2 \times 8 \cos \frac{\pi}{k+2} \int d E E^{k / 2} \psi(E) \psi^{\prime}(E)=\frac{k}{k+2} \\
& =\text { agrees with Cecotti et al }
\end{aligned}
$$

Conclusion

Another application of $O D E / I M$
\Rightarrow Find analytic solutions to TBA
(∞-) Many open questions
X Why F-term potential

$$
W_{R} \text { "solves " TBA? }
$$

$\times \uparrow$ only \mathbb{Z}_{2} case how about $\not Z_{n}$?
x only $z=t t^{*} \rightarrow 0$ limit:
ODE/IM helpful for Z arbitrary ?
x Why ODE/IM?

Appendix 1 Next leading perturbation (SU(2) case)
$\left.e_{x,}\right) \quad W(x, t)=\frac{x^{6}}{6}-\frac{t x^{2}}{2}$
Cecotti et al : redefinition of super field

$$
x^{2} \rightarrow x
$$

New index $Q \rightarrow 2 Q$ of $W(x)=\frac{x^{3}}{3}-t x$

Observation in ODE/IM

$$
\begin{aligned}
& \psi(t)=\int_{e} e^{W(x, t)} d x \quad \text { satisfies } \frac{d^{3}}{d t^{3}} \psi=\frac{1}{4} \sqrt{t} \frac{d}{d t} \sqrt{ } \\
& \Rightarrow \quad \psi=A_{i}^{2}(c t) \quad A_{i}(c t) B_{i}(r t) \quad B_{i}^{2}(c t) \quad\left(c=16^{\frac{1}{3}}\right) \\
& Q=2 Q \text { of } \frac{x^{3}}{3}-t x \quad \text { follows! }
\end{aligned}
$$

Appendix $2 \quad \not \mathbb{Z}_{3}$ case

$$
w(x, t)=\frac{x^{4}}{4}-t x
$$

Fendley-Intriligator TBA

observation from ODE/IM

- $\psi(t)=\int_{e} e^{w(x+t)} d x \quad$ satisfies

$$
\frac{d^{3}}{d t^{3}} \psi+t \psi=0
$$

- h deformation $\underset{h \rightarrow 0}{\rightarrow}$ Fendley-Intriligator TBA recovered
- $\Psi(t) \sim \lim _{N \rightarrow \infty}{ }_{3} F_{2}\left(\begin{array}{ccc|c}-N,-N-\frac{1}{4} & -N-\frac{1}{2} & \frac{x^{4}}{N^{3}}\end{array}\right)$

Elementary?

