CORRELATION FUNCTIONS IN QUANTUM INTEGRABLE MODELS
FROM Q-DEFORMATION OF CANONICAL NORMALISED
SECOND KIND DIFFERENTIAL.

Fedor Smirnov

Joint work with M. Jimbo, T. Miwa

—p.1/27



1. From XIX century algebraic geometry.
Consider an algebraic curve
R(z,w)=0,

requiring that it is non-singular, i.e. there are no solutions to the equations:
R(z,w) =0, 0.,R(z,w)=0, OpR(z,w)=0.

Holomorphic differentials:
Pj(z, w)

- OwR(z, w)dz’

T3

where P;(z,w) are chosen requiring regularity at infinite points.

Near the branch point in z-plain (solution to

R(z,w) =0, 0OwR(z,w)=0.)we take w as variable:

_ Pi(zw)
0,R(z,w)

There are g (algebraic genus) of such differentials. —pas21

dw .

O'j:



Geometrical picture: Riemann surface of genus g. Chose the homology
basis

(0417'“ y Ag | Bla"'aﬁg)a

with canonical intersections:
a;oa; =0, [;ioB; =0, «ofB;=10;.

Non-degeneracy condition O.
For non-singular algebraic curve

det(/a'crj) £0.

(A

This allows to introduce normalised 1-kind differentials:

U.Jj . / U.Jj = (Si’j .
07}
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2-kind differentials have singularities, but no residues. Up to exact forms
dR(p), fromnowon p=(z,w),

there are g of them.

Useful exact form (with respect to p,):

B dZQ R(Zl,w2)
po(p1,p2) = 0w2R(zg,w2)d1 ((21 — z2) (w1 — w2)) .

We have for p; — ps:

1

21 — 22)

po(p1,p2) = <( 5 + 0(1)) dzydzy .

On the other hand for z; — oo

g
0(p1,p2) = > o(p2)d(p1) + O(1),
g=1
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Intorduce the two form
o(p1,p2) = po(p1,p2) — po(P2,P1) -
It has no singularity at p; = ps, hence
g
o(p1,p2) Z 1) —o(p1)a(pz2)) -
j=1

Differentials o, 5; are defined up to the action of Sp(2g). This is not the
modular group, but its close cousin. It can be shown that they are dual

with respect to

M O N2 = /Uld_l%,
5

where v goes around z = oc.
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Riemann bilinear identity.

The form o(p1, p2) IS exact, but singular. It is easy to see that

: // (b1, p2)
P O\P1,P2) = Y1 °972.
27TZ Y1 Y Y2

So, the matrix of periods for ¢, 5; belongs to Sp(2g). The modular group
Sp(2¢, Z) acts on this matrix from cycle’s side.
Multiplying in opposite direction we get more conventional form:

1 g
Py (/ 771/ 772—/ 772/ 771>:7710772-

271

71=1
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Consider one guoter of RBI (1/4RBI):

/ai /aj o(p1,p2) =0.

Introduce matrices of a-periods:

Ai,j:/ Tj s Bz',j:/ Tj -
(o] (o]

J J

Due to 1/4RBI the matrix X = A~'B is symmetric.

Canonical normalised second kind differential.
This is a fundamental for us object. Definition:

1

(21 — 22)

p(p1,p2) = ( 5 + 0(1)> dz1dz, / p(p1,p2) =0, Vj.

J
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Construction:

g
p(p1,p2) = po(p1,p2) — Y o(p2)5(p1) + Z X; ;05 (p1)oi(p2) -
J=1 1,7=1

It is symmetric due to the fact that X is symmetric. We need only 1/4RBI
to prove this.
One more property:

/ p(p1,p2) = wj(p2) -

J
Applications of the canonical normalised second kind differential.

Normalised differential with locally defined singular part df (p) can be
constructed using p(p1, p2):

n(p) = / o(p, p1) f(p1)
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Just for fun. Suppose f(p) is globally defined. Then all periods of df
vanish. In our construction a-periods vanish automatically, for b-periods
we have a system of linear requirements:

/ij(p)f(p) =0, Vj.

This implies Riemann-Roch theorem.

Important facts to remember from this part.
1. Non-degeneracy condition: determinant of a-periods of holomorphic
differentials do not vanish.

2. Symmetry of the canonical 2-kind differential requires 1/4RBI.

3. Every normalised differential is constructed from its singular part via the

canonical 2-kind differential.
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2. Formulation of our problem

We define two spaces: $s= & C?, Hv = QR Cm, andthe
m=1

j=—oc

rectangular transfer-matrix:

%

Tsm = H Tim

j=—o00

YN
where n
Tim =Tjm(1), )=]] Lim(¢/mm)-

m=1

The L-operators are obtained form the universal one

C2qH2+l——q‘H_3i (¢ — )CF@ 21
(q—q¢ g7 E ¢ —q 7 ]’

Lj(¢) =q*
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We consider the linear functional

Try Trs (TS,M q2(mS—|—aS(O))O)

ZKJ{ 2045'(0)0} _ ’
4 Tra Trs (TS M q2('f5+045(0)))

where S =332 02, S(0) = QZJ _ 0%, O s local. Graphically:
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Evaluation of Z on descendant created by fermions. Consider two
Matsubara transfer-matrices:

Tnm(C, ) = Try (Tj,M(C)qm?)a TGk + o) = Trj(Tj,M(C)q(m—i_a)J?) :

Denote by |x), (k 4+ «| the eigenvectors corresponding to maximal
eigenvalues of T\ (1, k) and T (1, k + «).
Suppose ¢**%00 = g2k X, .. Itis easy to see that

T(1, o+ k)F1
T(1, k)™
(K + | Trig ) (Tigm) M@ m Xy ) |K)
(K + alk) '

Z/i{QQQS(k—l)X[k’m]} —

X

We need
Non-degeneracy condition 1.

<’€+O‘"€> 7& 0. —p.12/27



3. Analysis of Matsubara data. Deformed Abelian differentials.

In what follows one has to keep in mind an analogy with the analysis of
hyper-elliptic Riemann surface. In the previous notations it corresponds to

R(z,w) = a(z)w™t +d(z)w —T(z) =0,

with dega(z) = degd(z) = degT'(z) = n. Genusis g =n — 1.

Consider Tam (¢, A) for us A = k, kK + a. We have in addition two solutions
to Baxter equation (z = (2, the notations are not perfect):

T (¢ A)Qug (¢ A) = d(QQpr(Cas A) + alQ) Qe (Ca™ N

where

= [ @om(@/m), () =™ -1,

m=1

H Qe (C/Tim), ds(C) = C2q_28+1 — 1.
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Two solutions are specified by

Q31 (¢, A) = ¢FXPol(¢?).

Under the spin reversal:

Quantum Wronskian

1
Qi (€ N Qi (€a: A) — Qpp (€ AR (Ca, A) = =S _ S W(¢),

where
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We introduce the function

n

1
Psm C/Tm ) SOS(C) — H Czq—23—|—2kz—}—1 —1 ’
k=0

m=1

which satisfies

a(Cq)p(Cq) = d(C)p(C) -

Conours I'}, contain different series of its poles:
Fm D { 2 28m Qk—l; k:(),°-°,28m}.

In addition we introduce I'y going around ¢? = 0.
Deformed Abelian integrals (a-cycles):

d¢?

/ FEOQT (¢ r+ )@ (¢ R)o(0)

where (T f*(() is a polynomial (or maybe rational) in ¢2, in order that the
Integrand is single-valued. From now on we consider the eigenvalues on
our favourites states |k), |k + «).
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We shall need two difference operators:

Acf(Q) = f(Ca) = f(Ca™), dcf(Q) = f(C) —pl2)f(Ca),

where
T((, k+ )

T(¢, k)

“Primitive function" A7 " is well defined on (=“Pol(¢?).
Simple identity for (**Pol(¢?)

p(C) =

d¢?

/ 7(¢,) (5cAT 4(0)) QF (G + )@ (09O Gy

dc?

/fi OQT (¢, k+a)QF(Lq, k) (C)?’

and definition otherwise.
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Returning to (**Pol(¢?) we observe two fundamental facts.
g-deformed exact forms. Define a g-deformed exact form to be an
expression

( (©))

T(CR)AZT (FROTC R) +T(C r+a)AZ (FF(OT(C K + )
—T(@n)Agl (ST (g, k+ @) =T,k +a)A7 (fF(Cqa DT (Cq™ k)
+a(Cq)d(¢) fF(¢q) — d(CqMalQ) fF (¢,

where f*(¢) = (**Pol(¢?). Then we have

[ B¢+ )@ (R0 %

c = 0.
I'm

With this the degree of polynomial can be reduced to 2n — 1, so, we have

—p.17/27
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1/4 of Riemann bilinear identities.
Consider the following function in two variables

T(Cag) — 7“+(<, 'S) o T_(f, C) )

where 4 (¢6) =1t (( Elr, @), (E,Q) =1 (| — K, —a),

and

r+<< Elr, o) = T(C, k)AL (V(C/E, a)(T(¢, k) — T(E, K)))
T(¢k+a)ATH (Y(C/Ea)(T (¢ k+a) = T(E K+ a)))
T(¢, k)A; ((q</£ @) (T((g, k+a) = T( k + a)))
(m+a> (g ) (TG k) = T(E, K)))

+ (a <<q>—a<§>) (O)(g¢/€ a) = (d(Cq™) — d(€))a(Q)y(g /& @)

Then

/ / Q™ (o r+ QT (G RQT(E K+ a)Q (€ k)p(O)pl(6) 2 %

¢ e

= 0.
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Clearly £%r* (¢, €) is a polynomial in £2 and ¢~“r~ (&, ¢) is a polynomial in
¢2, both of degree n. This allows us to define the polynomials p by

Z COpR(C)E TP (6,0 = ) £ pm (£
Introduce the (n + 1) x (n 4+ 1) matrices

dc?

A = / CEEQF(C o+ ) QRO T

dc?

IJ /Ci‘)‘ QT (¢, k+ )QE(¢, )y (C)?'

Then 1/4RBI means
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4. Fermions.

On the space W(®) = P Wa—s.s. we define action of fermions:

b*(() =) (¢*=1)"'by, () =) (P~ 1) e
p=1 p=1
b(()=) ((*~1)Pb,, c({)=> (*—1)"c,.
p=0 p=0

Non-trivial commutation relations are:
[b(Cl)v b* (C2>]+ — _¢(C2/C17 O‘) ) [C(C1>7 c’ (C2>]—|— — ¢(C1/C27 Oé) )

where
¢ +1

2(¢2—1)

P((,a) = ¢
Fermions have the block structure:

* . * .
bpacp . Wa—s+1,s—1 — Wa—s,s; prbp . Wa—s—l,s+1 — Wa—s,s-

Annihilation operators kill the primary field: c,(¢?*°(9) = b, (¢?*%9) = 0._, 20



We have two lemmas whose proofs are purely algebraic.

Lemma 1.
We have
16 m 2 (°(6,0) = 55 F ana G O6(6, ) 5 ) (0} = ¢ Palc?),

where X € W,1,—1, [ encircles¢? = 1, and P, (¢?) isa polynomial in ¢ of
degree n, and

: —1
4 T(C’ ) (57 li) (a(f)d(CW(QC/f, Oz) — a(C)d(g)w(q C/g) Oé))

+ 800 AT (¢ /€ ).

Wsmg(c 5)
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Lemma 2.
The a-periods vanish

/ T(C 1) 27 (b7 (¢, 0) (X)}Q™ (¢, + )@ (C, %)SO(C)C% _0,

I'm

for X e Wo41 -1, m=0,1,--- n.

Now we can follow our XIX century logic: T'((, k) Z"{b*({,a)(X)} is a
normalised differential with singular part given by

g § sing (€, €) 2" {e(& 0)(X)} 4

Hence

75 b (O)(X)) = = 74 w(C,6) Z{c(€)(X))

271
T

d&?
5—2 )

with I" going around 1. It remains to describe the canonical 2-kind differen-

tial w(¢, &).
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From the properties above w((, ) must satisfy the requirements:

1. Singular part:

T(C, 1) (90(G1€) = waing ((,€)) = CPa(C?).

2. Normalisation:

[ TER(COQ (G rt @@ (€ Rp0) G =0, m=0,--

I'm

It is more or less immediate to write a formula

1
(€, R)T(E, k)

w(¢§) ==

v (O AT T BT (€) + waing (¢, €)(C,6)

Writing explicitly the dependence on « and recalling 1/4RBI we obtain the

symmetry:

w(¢, & — a) =w(¢, (la).
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Non-degeneracy condition 2.
det AT £0.
Recall that A* is the matrix of a-periods:

. d 2
A= [ Cr 0 (G Sy
I';

Its similarity with the Non-degeneracy condition 0 is transparent. However,
we are mostly interested in its equivalence to the Non-degeneracy

condition 1:
(k +alk) #0.
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Usually one writes

s+ als) = (- T Be) [T €O

where (M;—L)Q are zeros of (F*Q*({, k + «) and ()\;—L)2 are zeros of
(FrQ* (¢, k). There is another way to proceed:

(k+alr) = (=] [ Blu;) [ BOAT

This is the domain wall partition function, which we normalise as
Mp (&1, 6nlm, - m) = [ [ &1 1] B&) 1+)
j=1

with specification {¢;} = {u; } U {A]}. Verifying known recurrence
relations we find:
Mn(fla o €n|7_17 U Tn)
n(n 1)/21_[7'_2 H ¢ — ¢ 1TJ2)H(7'2 — T; ) det(AT) .

i,j i<j .—p.25/27



5. Conclusion
Let us return to the formula

T(1, o+ k)F1
T(1, k)™

ZR{QQOCS(k‘—l)X[k’m]} —

: (K + alr)

If X = Ec* ... Ecm then the essential part

(K + | Trig m) (T[k,m],Mq%S““m] Xikm)) |K)
= (x + alTha(L, ) - Taa (L, 0) S |6)

3

where T (1, k)¢ are matrix element (with respect to a) of T, v (¢)q"e.

€

There are other ways to compute this. Why should we care about our
fermions?

(k4 | Trig ) (Tigm) M@ I Xy ) |K)
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Because fermions provide nice linear combinations of operators for which
the matrix element is simple. Moreover, they provide families of operators
of different length with universally described value of Z*. The simplest

example is

oo

b (O)e"(€)(a*50) = 37 (€2 = 1) HE = 1) Ky g0

r,s=1

where X|; 44 has support [1,r + s]. At the same time
27 {b (e (©) () } = w(¢, ).

This gives the opportunity of scaling limit.

.—p.27/27



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

