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1. From XIX century algebraic geometry.

Consider an algebraic curve

R(z, w) = 0 ,

requiring that it is non-singular, i.e. there are no solutions to the equations:

R(z, w) = 0, ∂zR(z, w) = 0, ∂wR(z, w) = 0 .

Holomorphic differentials:
σj =

Pj(z, w)

∂wR(z, w)
dz ,

where Pj(z, w) are chosen requiring regularity at infinite points.
Near the branch point in z-plain (solution to
R(z, w) = 0, ∂wR(z, w) = 0 .) we take w as variable:

σj = −
Pj(z, w)

∂zR(z, w)
dw .

There are g (algebraic genus) of such differentials. . – p.2/27



Geometrical picture: Riemann surface of genus g. Chose the homology
basis

(α1, · · · , αg ; β1, · · · , βg) ,

with canonical intersections:

αi ◦ αj = 0, βi ◦ βj = 0, αi ◦ βj = δi,j .

Non-degeneracy condition 0.
For non-singular algebraic curve

det
(

∫

αi

σj

)

6= 0 .

This allows to introduce normalised 1-kind differentials:

ωj :

∫

αi

ωj = δi,j .
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2-kind differentials have singularities, but no residues. Up to exact forms

dR(p) , from now on p = (z, w) ,

there are g of them.

Useful exact form (with respect to p1):

ρ0(p1, p2) =
dz2

∂w2R(z2, w2)
d1

(

R(z1, w2)

(z1 − z2)(w1 − w2)

)

.

We have for p1 → p2:

ρ0(p1, p2) =

(

1

(z1 − z2)2
+O(1)

)

dz1dz2 .

On the other hand for z1 → ∞

ρ0(p1, p2) =

g
∑

j=1

σ(p2)σ̃(p1) +O(1) ,
. – p.4/27



Intorduce the two form

σ(p1, p2) = ρ0(p1, p2)− ρ0(p2, p1) .

It has no singularity at p1 = p2, hence

σ(p1, p2) =

g
∑

j=1

(σ(p2)σ̃(p1)− σ(p1)σ̃(p2)) .

Differentials σi, σ̃i are defined up to the action of Sp(2g). This is not the
modular group, but its close cousin. It can be shown that they are dual
with respect to

η1 ◦ η2 =

∫

γ

η1d
−1η2 ,

where γ goes around z = ∞.
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Riemann bilinear identity.

The form σ(p1, p2) is exact, but singular. It is easy to see that

1

2πi

∫

γ1

∫

γ2

σ(p1, p2) = γ1 ◦ γ2 .

So, the matrix of periods for σj , σ̃j belongs to Sp(2g). The modular group
Sp(2g,Z) acts on this matrix from cycle’s side.
Multiplying in opposite direction we get more conventional form:

1

2πi

g
∑

j=1

(

∫

αj

η1

∫

βj

η2 −

∫

αj

η2

∫

βj

η1

)

= η1 ◦ η2 .
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Consider one quoter of RBI (1/4RBI):

∫

αi

∫

αj

σ(p1, p2) = 0 .

Introduce matrices of a-periods:

Ai,j =

∫

αj

σj , Bi,j =

∫

αj

σ̃j .

Due to 1/4RBI the matrix X = A−1B is symmetric.

Canonical normalised second kind differential.

This is a fundamental for us object. Definition:

ρ(p1, p2) =

(

1

(z1 − z2)2
+O(1)

)

dz1dz2,

∫

αj

ρ(p1, p2) = 0 , ∀j .
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Construction:

ρ(p1, p2) = ρ0(p1, p2)−

g
∑

j=1

σ(p2)σ̃(p1) +

g
∑

i,j=1

Xi,jσj(p1)σi(p2) .

It is symmetric due to the fact that X is symmetric. We need only 1/4RBI
to prove this.
One more property:

∫

βj

ρ(p1, p2) = ωj(p2) .

Applications of the canonical normalised second kind differential.

Normalised differential with locally defined singular part df(p) can be
constructed using ρ(p1, p2):

η(p) =

∫

Γ

ρ(p, p1)f(p1) .
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Just for fun. Suppose f(p) is globally defined. Then all periods of df
vanish. In our construction a-periods vanish automatically, for b-periods
we have a system of linear requirements:

∫

Γ

ωj(p)f(p) = 0 , ∀j .

This implies Riemann-Roch theorem.

Important facts to remember from this part.
1. Non-degeneracy condition: determinant of a-periods of holomorphic
differentials do not vanish.

2. Symmetry of the canonical 2-kind differential requires 1/4RBI.

3. Every normalised differential is constructed from its singular part via the

canonical 2-kind differential.
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2. Formulation of our problem

We define two spaces: HS =
∞
⊗

j=−∞

C2 , HM =
n
⊗

m=1

Cdm , and the

rectangular transfer-matrix:

TS,M =

y
∞
∏

j=−∞

Tj,M ,

where
Tj,M ≡ Tj,M(1), Tj,M(ζ) =

x
n
∏

m=1

Lj,m(ζ/τm) .

The L-operators are obtained form the universal one

Lj(ζ) = q
1
2

(

ζ2q
H+1

2 − q−
H+1

2 (q − q−1)ζFq
H−1

2

(q − q−1)ζq−
H−1

2 E ζ2q−
H−1

2 − q
H−1

2

)

j

,
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We consider the linear functional

Zκ
{

q2αS(0)O
}

=
TrMTrS

(

TS,M q2(κS+αS(0))O
)

TrMTrS
(

TS,M q2(κS+αS(0))
) ,

where S = 1
2

∑∞
j=−∞ σ3

j , S(0) = 1
2

∑0
j=−∞ σ3

j , O is local. Graphically:

 Space

(α+κ) σ 3
= q =qi j

a
r
a
b
u
s
t
a
M

κ σ 3
= L
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Evaluation of Z on descendant created by fermions. Consider two
Matsubara transfer-matrices:

TM(ζ, κ) = Trj(Tj,M(ζ)qκσ
3
j ), TM(ζ, κ+ α) = Trj(Tj,M(ζ)q(κ+α)σ3

j ) .

Denote by |κ〉, 〈κ+ α| the eigenvectors corresponding to maximal
eigenvalues of TM(1, κ) and TM(1, κ+ α).
Suppose q2αS(0)O = q2αS(k−1)X[k,m]. It is easy to see that

Zκ
{

q2αS(k−1)X[k,m]

}

=
T (1, α+ κ)k−1

T (1, κ)m

×
〈κ+ α|Tr[k,m]

(

T[k,m],Mq
2κS[k,m]X[k,m]

)

|κ〉

〈κ+ α|κ〉
.

We need

Non-degeneracy condition 1.

〈κ+ α|κ〉 6= 0 .
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3. Analysis of Matsubara data. Deformed Abelian differentials.

In what follows one has to keep in mind an analogy with the analysis of
hyper-elliptic Riemann surface. In the previous notations it corresponds to

R(z, w) = a(z)w−1 + d(z)w − T (z) = 0 ,

with dega(z) = degd(z) = degT (z) = n. Genus is g = n− 1.

Consider TM(ζ, λ) for us λ = κ, κ+ α. We have in addition two solutions
to Baxter equation (z = ζ2, the notations are not perfect):

TM(ζ, λ)Q±
M(ζ, λ) = d(ζ)Q±

M(ζq, λ) + a(ζ)Q±
M(ζq−1, λ) ,

where

a(ζ) =

n
∏

m=1

asm(ζ/τm), as(ζ) = ζ2q2s+1 − 1 ,

d(ζ) =
n
∏

m=1

dsm(ζ/τm), ds(ζ) = ζ2q−2s+1 − 1 .
. – p.13/27



Two solutions are specified by

Q±
M(ζ, λ) = ζ±(λ−S)Pol(ζ2) .

Under the spin reversal:

TM(ζ, λ) = J TM(ζ,−λ) J , Q−
M(ζ, λ) = J Q+

M(ζ,−λ) J .

Quantum Wronskian

Q+
M(ζ, λ)Q−

M(ζq, λ)−Q−
M(ζ, λ)Q+

M(ζq, λ) =
1

qλ−S − q−λ+S
W (ζ),

where

W (ζ) =
n
∏

m=1

wsm(ζ/τm), ws(ζ) =
2s
∏

k=1

(1− ζ2q2k−2s+1) .
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We introduce the function

ϕ(ζ) =
n
∏

m=1

ϕsm(ζ/τm) , ϕs(ζ) =
2s
∏

k=0

1

ζ2q−2s+2k+1 − 1
,

which satisfies
a(ζq)ϕ(ζq) = d(ζ)ϕ(ζ) .

Conours Γm contain different series of its poles:

Γm ⊃ {τ2mq
2sm−2k−1; k = 0, · · · , 2sm} .

In addition we introduce Γ0 going around ζ2 = 0.
Deformed Abelian integrals (a-cycles):

∫

Γm

f±(ζ)Q∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)
dζ2

ζ2
,

where ζ∓αf±(ζ) is a polynomial (or maybe rational) in ζ2, in order that the
integrand is single-valued. From now on we consider the eigenvalues on
our favourites states |κ〉, |κ+ α〉.
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We shall need two difference operators:

∆ζf(ζ) = f(ζq)− f(ζq−1) , δζf(ζ) = f(ζ)− ρ(z)f(ζq−1) ,

where

ρ(ζ) =
T (ζ, κ+ α)

T (ζ, κ)
.

“Primitive function" ∆−1
ζ is well defined on ζ±αPol(ζ2).

Simple identity for ζ±αPol(ζ2)

∫

Γm

T (ζ, κ)
(

δζ∆
−1
ζ f±(ζ)

)

Q∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)
dζ2

ζ2

=

∫

Γm

f±(ζ)d(ζ)Q∓(ζ, κ+ α)Q±(ζq, κ)ϕ(ζ)
dζ2

ζ2
,

and definition otherwise.
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Returning to ζ±αPol(ζ2) we observe two fundamental facts.
q-deformed exact forms. Define a q-deformed exact form to be an
expression

E
(

f±(ζ)
)

= T (ζ, κ)∆−1
ζ

(

f±(ζ)T (ζ, κ)
)

+ T (ζ, κ+ α)∆−1
ζ

(

f±(ζ)T (ζ, κ+ α)
)

− T (ζ, κ)∆−1
ζ

(

f±(ζq)T (ζq, κ+ α)
)

− T (ζ, κ+ α)∆−1
ζ

(

f±(ζq−1)T (ζq−1, κ)
)

+ a(ζq)d(ζ)f±(ζq)− d(ζq−1)a(ζ)f±(ζq−1) ,

where f±(ζ) = ζ±αPol(ζ2). Then we have

∫

Γm

E
(

f±(ζ)
)

Q∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)
dζ2

ζ2
= 0 .

With this the degree of polynomial can be reduced to 2n − 1, so, we have

n+ n different polynomials. . – p.17/27



1/4 of Riemann bilinear identities.

Consider the following function in two variables

r(ζ, ξ) = r+(ζ, ξ)− r−(ξ, ζ) ,

where r+(ζ, ξ) = r+(ζ, ξ|κ, α), r−(ξ, ζ) = r+(ξ, ζ| − κ,−α),

and

r+(ζ, ξ|κ, α) = T (ζ, κ)∆−1
ζ (ψ(ζ/ξ, α)(T (ζ, κ)− T (ξ, κ)))

+ T (ζ, κ+ α)∆−1
ζ (ψ(ζ/ξ, α)(T (ζ, κ+ α)− T (ξ, κ+ α)))

− T (ζ, κ)∆−1
ζ (ψ(qζ/ξ, α)(T (ζq, κ+ α)− T (ξ, κ+ α)))

− T (ζ, κ+ α)∆−1
ζ

(

ψ(q−1ζ/ξ, α)(T (ζq−1, κ)− T (ξ, κ))
)

+
(

a(ζq)− a(ξ)
)

d(ζ)ψ(qζ/ξ, α)−
(

d(ζq−1
)

− d(ξ))a(ζ)ψ(q−1ζ/ξ, α) .

Then

∫

Γi

∫

Γj

r(ζ, ξ)Q−(ζ, κ+ α)Q+(ζ, κ)Q+(ξ, κ+ α)Q−(ξ, κ)ϕ(ζ)ϕ(ξ)
dζ2

ζ2
dξ2

ξ2
= 0 .
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Clearly ξαr+(ζ, ξ) is a polynomial in ξ2 and ζ−αr−(ξ, ζ) is a polynomial in
ζ2, both of degree n. This allows us to define the polynomials p±m by

r+(ζ, ξ) =
n
∑

m=0

ζαp+m(ζ2)ξ−α+2m , r−(ξ, ζ) =
n
∑

m=0

ξ−αp−m(ξ2)ζα+2m .

Introduce the (n+ 1)× (n+ 1) matrices

A±
i,j =

∫

Γi

ζ±α+2jQ∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)
dζ2

ζ2
,

B±
i,j =

∫

Γi

ζ±αp±j (ζ
2)Q∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)

dζ2

ζ2
.

Then 1/4RBI means

B+(A−)t = A+(B−)t .
. – p.19/27



4. Fermions.

On the space W(α) =
∞
⊕

s=−∞

Wα−s,s . we define action of fermions:

b
∗(ζ) =

∞
∑

p=1

(ζ2 − 1)p−1
b
∗
p , c

∗(ζ) =

∞
∑

p=1

(ζ2 − 1)p−1
c
∗
p ,

b(ζ) =
∞
∑

p=0

(ζ2 − 1)−p
bp , c(ζ) =

∞
∑

p=0

(ζ2 − 1)−p
cp .

Non-trivial commutation relations are:

[b(ζ1),b
∗(ζ2)]+ = −ψ(ζ2/ζ1, α) , [c(ζ1), c

∗(ζ2)]+ = ψ(ζ1/ζ2, α) ,

where

ψ(ζ, α) = ζα
ζ2 + 1

2(ζ2 − 1)
.

Fermions have the block structure:

b
∗
p, cp : Wα−s+1,s−1 → Wα−s,s , c

∗
p,bp : Wα−s−1,s+1 → Wα−s,s .

Annihilation operators kill the primary field: cp(q2αS(0)) = bp(q
2αS(0)) = 0.. – p.20/27



We have two lemmas whose proofs are purely algebraic.

Lemma 1.

We have

T (ζ, κ)Zκ
{(

b
∗(ζ, α)−

1

2πi

∮

Γ

ωsing(ζ, ξ)c(ξ, α)
dξ2

ξ2

)

(X)
}

= ζαPn(ζ
2),

where X ∈ Wα+1,−1, Γ encircles ξ2 = 1, and Pn(ζ
2) is a polynomial in ζ2 of

degree n, and

ωsing(ζ, ξ) =
1

4

1

T (ζ, κ)T (ξ, κ)

(

a(ξ)d(ζ)ψ(qζ/ξ, α)− a(ζ)d(ξ)ψ(q−1ζ/ξ, α)
)

+ δζδξ∆
−1
ζ ψ(ζ/ξ, α) .
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Lemma 2.

The a-periods vanish

∫

Γm

T (ζ, κ)Zκ{b∗(ζ, α)(X)}Q−(ζ, κ+ α)Q+(ζ, κ)ϕ(ζ)
dζ2

ζ2
= 0,

for X ∈ Wα+1,−1, m = 0,1, · · · ,n.

Now we can follow our XIX century logic: T (ζ, κ)Zκ{b∗(ζ, α)(X)} is a
normalised differential with singular part given by
1

2πi

∮

Γ

ωsing(ζ, ξ)Z
κ{c(ξ, α)(X)}dξ2

ξ2 .

Hence

Zκ
{

b
∗(ζ)(X)

}

=
1

2πi

∮

Γ

ω(ζ, ξ)Zκ
{

c(ξ)(X)
}dξ2

ξ2
,

with Γ going around 1. It remains to describe the canonical 2-kind differen-

tial ω(ζ, ξ).
. – p.22/27



From the properties above ω(ζ, ξ) must satisfy the requirements:
1. Singular part:

T (ζ, κ)
(

ω(ζ, ξ)− ωsing(ζ, ξ)
)

= ζαPn(ζ
2) .

2. Normalisation:

∫

Γm

T (ζ, κ)ω(ζ, ξ)Q−(ζ, κ+ α)Q+(ζ, κ)ϕ(ζ)
dζ2

ζ2
= 0, m = 0, · · · ,n .

It is more or less immediate to write a formula

ω(ζ, ξ) =
1

T (ζ, κ)T (ξ, κ)
v+(ζ)t(A+)−1B+v−(ξ) + ωsing(ζ, ξ)(ζ, ξ) ,

Writing explicitly the dependence on α and recalling 1/4RBI we obtain the
symmetry:

ω(ζ, ξ| − α) = ω(ξ, ζ|α) . . – p.23/27



Non-degeneracy condition 2.

detA+ 6= 0 .

Recall that A+ is the matrix of a-periods:

A+
i,j =

∫

Γi

ζα+2jQ−(ζ, κ+ α)Q+(ζ, κ)ϕ(ζ)
dζ2

ζ2
.

Its similarity with the Non-degeneracy condition 0 is transparent. However,
we are mostly interested in its equivalence to the Non-degeneracy
condition 1:

〈κ+ α|κ〉 6= 0 .
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Usually one writes

〈κ+ α|κ〉 = 〈−|
∏

B(µ−
j )
∏

C(λ−j )|−〉 ,

where (µ±
j )

2 are zeros of ζ∓κQ±(ζ, κ+ α) and (λ±j )
2 are zeros of

ζ∓κQ±(ζ, κ). There is another way to proceed:

〈κ+ α|κ〉 = 〈−|
∏

B(µ−
j )
∏

B(λ+j )|+〉 .

This is the domain wall partition function, which we normalise as

Mn(ξ1, · · · , ξn|τ1, · · · , τn) =
∏

ξ−1
j 〈−|

n
∏

j=1

B(ξj) |+〉

with specification {ξj} = {µ−
j } ∪ {λ+j }. Verifying known recurrence

relations we find:

Mn(ξ1, · · · , ξn|τ1, · · · , τn)

= (−1)n(n−1)/2
∏

τ−2
j

∏

i,j

(qτ2i − q−1τ2j )
∏

i<j

(τ2i − τ2j ) det(A
+) .
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5. Conclusion

Let us return to the formula

Zκ
{

q2αS(k−1)X[k,m]

}

=
T (1, α+ κ)k−1

T (1, κ)m

×
〈κ+ α|Tr[k,m]

(

T[k,m],Mq
2κS[k,m]X[k,m]

)

|κ〉

〈κ+ α|κ〉
.

If X = E
ǫ′k
ǫk · · ·E

ǫ′m
ǫm then the essential part

〈κ+ α|Tr[k,m]

(

T[k,m],Mq
2κS[k,m]X[k,m]

)

|κ〉

= 〈κ+ α|TM(1, κ)ǫkǫ′
k

· · ·TM(1, κ)ǫmǫ′m |κ〉 ,

where TM(1, κ)ǫ
′

ǫ are matrix element (with respect to a) of Ta,M(ζ)qκσ
3
a .

There are other ways to compute this. Why should we care about our
fermions?
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Because fermions provide nice linear combinations of operators for which
the matrix element is simple. Moreover, they provide families of operators
of different length with universally described value of Zκ. The simplest
example is

b
∗(ζ)c∗(ξ)

(

q2αS(0)
)

=
∞
∑

r,s=1

(ζ2 − 1)r−1(ξ2 − 1)s−1X[1,r+s]q
2αS(0) ,

where X[1,r+s] has support [1, r + s]. At the same time

Zκ
{

b
∗(ζ)c∗(ξ)

(

q2αS(0)
)

}

= ω(ζ, ξ) .

This gives the opportunity of scaling limit.

. – p.27/27


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

