Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Spin chains based on (quantum) $\mathrm{gl}(3)$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General
background
General
background
LAPTH, Annecy, France

Bad Honnef 2014
with S. Belliard (L2C, Montpellier), S. Pakuliak (JINR, Dubna) and N. Slavnov (Steklov Math. Inst., Moscow)
arXiv:1206.4931, arXiv:1207.0956, arXiv:1210.0768, arXiv:1211.3968 arXiv:1304.7602, arXiv:1310.3253, arXiv:1311.3500, arXiv:1312.1488
arXiv:1401.4355, arXiv:1406.5125

Plan of the talk
Notations
Bethe vectors
Correlation functions

Multiple actions of $T_{i j}(\bar{x})$ on BV s

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

General background: Integrable spin chains

Rational or trigonometric $9 \times 9 R$-matrix

$$
R(x, y) \in V \otimes V \text { with } V=\operatorname{End}\left(\mathbb{C}^{3}\right)
$$

$R(x, y)$ obeys Yang-Baxter equation (in $V \otimes V \otimes V$) $R^{12}\left(x_{1}, x_{2}\right) R^{13}\left(x_{1}, x_{3}\right) R^{23}\left(x_{2}, x_{3}\right)=R^{23}\left(x_{2}, x_{3}\right) R^{13}\left(x_{1}, x_{3}\right) R^{12}\left(x_{1}, x_{2}\right)$

It is associated to a quantum group \mathcal{A} which is:

- The Yangian $\mathcal{A}=Y(g / 3)$ when $R(x, y)$ is rational (XXX chain)
- The affine quantum group $\mathcal{A}=U_{q}\left(\widehat{g}_{3}\right)$ when $R(x, y)$ is trigonometric (XXZ chain)

Spin chains based on (quantum) $\mathbf{g}(\mathbf{3})$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

General background: Integrable spin chains

Rational or trigonometric $9 \times 9 R$-matrix
$R(x, y) \in V \otimes V$ with $V=\operatorname{End}\left(\mathbb{C}^{3}\right)$
$R(x, y)$ obeys Yang-Baxter equation (in $V \otimes V \otimes V$) $R^{12}\left(x_{1}, x_{2}\right) R^{13}\left(x_{1}, x_{3}\right) R^{23}\left(x_{2}, x_{3}\right)=R^{23}\left(x_{2}, x_{3}\right) R^{13}\left(x_{1}, x_{3}\right) R^{12}\left(x_{1}, x_{2}\right)$

It is associated to a quantum group \mathcal{A} which is:

- The Yangian $\mathcal{A}=Y(g / 3)$ when $R(x, y)$ is rational (XXX chain)
- The affine quantum group $\left.\mathcal{A}=U_{q}(\widehat{g})_{3}\right)$ when $R(x, y)$ is trigonometric (XXZ chain)

For the talk, rational R-matrix:

$$
R(x, y)=\mathbf{I}+g(x, y) \mathbf{P} \in \operatorname{End}\left(\mathbb{C}^{3}\right) \otimes \operatorname{End}\left(\mathbb{C}^{3}\right) \quad \text { and } \quad g(x, y)=\frac{c}{x-y}
$$

\mathbf{I} is the identity matrix, \mathbf{P} is the permutation matrix between two spaces $\operatorname{End}\left(\mathbb{C}^{3}\right), c$ is a constant.

Spin chains based on (quantum) $\mathbf{g l}(3)$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General
background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Monodromy matrix

$$
T(x)=\sum_{i, j=1}^{3} e_{i j} \otimes T_{i j}(x) \in \operatorname{End}\left(\mathbb{C}^{3}\right) \otimes \mathcal{A}
$$

Spin chains based

General
background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Eric Ragoucy

General

background

Choice of a $Y(g / 3)$ (lowest weight) representation:

$$
T_{j j}(w)|0\rangle=\lambda_{j}(w)|0\rangle, j=1,2,3 \quad T_{i j}(w)|0\rangle=0, \quad 1 \leq j<i \leq 3
$$

Up to normalisation $T(w) \rightarrow \lambda_{2}^{-1}(w) T(w)$, only need the ratios

$$
r_{1}(w)=\frac{\lambda_{1}(w)}{\lambda_{2}(w)}, \quad r_{3}(w)=\frac{\lambda_{3}(w)}{\lambda_{2}(w)}
$$

where r_{1} and r_{3} are free functional parameters.

General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BV s

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Eric Ragoucy

General

background

Aim

Compute the correlation functions $<\mathcal{O}_{1} \cdots \mathcal{O}_{n}>=\operatorname{tr}\left(\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right)$ for some local operators $\mathcal{O}_{1}, \cdots, \mathcal{O}_{n}$

General

background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

If one has a basis of the space of states $\mathcal{H},\{\mid \psi>\}$, then it is enough to compute $\left\langle\psi^{\prime}\right| \mathcal{O}_{1} \cdots \mathcal{O}_{n}|\psi\rangle$
Since we have a basis $\mathcal{O}|\psi\rangle=\sum\left\langle\psi^{\prime}\right| \mathcal{O}|\psi\rangle\left|\psi^{\prime}\right\rangle$, and we need "only" < $\psi \mid \psi^{\prime}>$

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Eric Ragoucy

General

background

Aim

- Compute Bethe vectors (BVs), eigenvectors of $t(x)$:

$$
t(x) \mathbb{B}^{a, b}(\bar{u}, \bar{v})=\tau(x \mid \bar{u}, \bar{v}) \mathbb{B}^{a, b}(\bar{u}, \bar{v}) \Rightarrow \text { Bethe ansatz eqs (BAE) }
$$

- Action of $T_{i j}(\bar{x})$ on $\mathbb{B}^{a, b}(\bar{u}, \bar{v})$
- Scalar product of off-shell BVs (without BAE)
- Form factors $\mathbb{C}^{a, b}(\bar{t}, \bar{s}) T_{i j}(\bar{x}) \mathbb{B}^{a, b}(\bar{u}, \bar{v})$

General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BV s

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Plan of the talk

- Bethe vectors (BVs)
- Multiple actions of Yangian generators on BVs
- Scalar products of BVs
- Form factors and correlation functions
- Conclusion

Calculations are rather technical \Rightarrow results only!

Presentation for $Y\left(g l_{3}\right)$ but most of the results are valid for $U_{q}\left(g l_{3}\right)$ (see at the end)

Spin chains based on (quantum) $\mathbf{g l}(3)$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation functions

Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Notations

Spin chains based on (quantum) $\mathbf{g}(\mathbf{3})$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy
Apart from the functions $g(x, y)=\frac{c}{x-y}, r_{1}(x)$ and $r_{3}(x)$ we introduce

$$
f(x, y)=\frac{x-y+c}{x-y}, \quad h(x, y)=\frac{f(x, y)}{g(x, y)}, \quad t(x, y)=\frac{g(x, y)}{h(x, y)}
$$

General

background
General
background
Plan of the talk

Notations

Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs
Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Notations

Apart from the functions $g(x, y)=\frac{c}{x-y}, r_{1}(x)$ and $r_{3}(x)$ we introduce

$$
f(x, y)=\frac{x-y+c}{x-y}, \quad h(x, y)=\frac{f(x, y)}{g(x, y)}, \quad t(x, y)=\frac{g(x, y)}{h(x, y)}
$$

Spin chains based

General
 background

General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions

- |. \mid is the dimension of a set: $\bar{w}=\left\{w_{1}, w_{2}\right\} \Rightarrow|\bar{w}|=2$, etc...
- Individual elements of the sets have latin subscripts: w_{j}, u_{k}, etc..
- Subsets of variables are denoted by roman indices: $\bar{u}_{\mathrm{I}}, \bar{v}_{\mathrm{iv}}, \bar{w}_{\mathrm{II}}$, etc.
- Special case: $\bar{u}_{j}=\bar{u} \backslash\left\{u_{j}\right\}, \bar{w}_{k}=\bar{w} \backslash\left\{w_{k}\right\}$, etc...

Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Notations

Apart from the functions $g(x, y)=\frac{c}{x-y}, r_{1}(x)$ and $r_{3}(x)$ we introduce
Spin chains based on (quantum) $\mathbf{g l}(3)$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

$$
f(x, y)=\frac{x-y+c}{x-y}, \quad h(x, y)=\frac{f(x, y)}{g(x, y)}, \quad t(x, y)=\frac{g(x, y)}{h(x, y)} .
$$

- "bar" always denote sets of variables: $\bar{w}, \bar{u}, \bar{v}$ etc..
- |. \mid is the dimension of a set: $\bar{w}=\left\{w_{1}, w_{2}\right\} \Rightarrow|\bar{w}|=2$, etc...
- Individual elements of the sets have latin subscripts: w_{j}, u_{k}, etc..
- Subsets of variables are denoted by roman indices: $\bar{u}_{\mathrm{I}}, \bar{v}_{\mathrm{iv}}, \bar{w}_{I I}$, etc.
- Special case: $\bar{u}_{j}=\bar{u} \backslash\left\{u_{j}\right\}, \bar{w}_{k}=\bar{w} \backslash\left\{w_{k}\right\}$, etc...

Shorthand notations for products of scalar functions:

$$
\begin{aligned}
& f\left(\bar{u}_{\text {II }}, \bar{u}_{\text {I }}\right)=\prod_{u_{j} \in \bar{u}_{\mathrm{I}}} \prod_{u_{k} \in \bar{u}_{\mathrm{I}}} f\left(u_{j}, u_{k}\right), \\
& r_{1}\left(\bar{u}_{\text {II }}\right)=\prod_{u_{j} \in \bar{u}_{\mathrm{II}}} r_{1}\left(u_{j}\right) ; \quad g\left(v_{k}, \bar{w}\right)=\prod_{w_{j} \in \bar{w}} g\left(v_{k}, w_{j}\right), \quad \text { etc.. }
\end{aligned}
$$

Bethe vectors

Framework: Algebraic-Nested Bethe ansatz (Leningrad school 80's) [Faddeev, Kulish, Reshetikhin, Sklyanin, Takhtajan]

Spin chains based on (quantum) $\mathbf{g l (3)}$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background

On-shell Bethe vectors

$$
t(x) \mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\tau(x \mid \bar{u} ; \bar{v}) \mathbb{B}^{a, b}(\bar{u} ; \bar{v})
$$

$\bar{u}=\left\{u_{1}, \ldots, u_{a}\right\}$ and $\bar{v}=\left\{v_{1}, \ldots, v_{b}\right\}$ are the Bethe parameters. $t(x)$-eigenvectors provided \bar{u} and \bar{v} obey the Bethe equations (BAEs):

$$
\begin{aligned}
r_{1}\left(\bar{u}_{\mathrm{I}}\right) & =\frac{f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{II}}\right)}{f\left(\bar{u}_{\mathrm{II}}, \bar{u}_{\mathrm{I}}\right)} f\left(\bar{v}, \bar{u}_{\mathrm{I}}\right), \\
r_{3}\left(\bar{v}_{\mathrm{I}}\right) & =\frac{f\left(\bar{v}_{\mathrm{II}}, \bar{v}_{\mathrm{I}}\right)}{f\left(\bar{v}_{\mathrm{I}}, \bar{v}_{\text {II }}\right)} f\left(\bar{v}_{\mathrm{I}}, \bar{u}\right) .
\end{aligned}
$$

that hold for arbitrary partitions of the sets \bar{u} and \bar{v} into subsets $\left\{\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{II}}\right\}$ and $\left\{\bar{v}_{\mathrm{I}}, \bar{v}_{\text {II }}\right\}$.

General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs
Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Known formulas: Trace formula ['07 Tarasov \& Varchenko]

Spin chains based on (quantum) $\mathbf{g}(\mathbf{3})$ algebras: Bethe vectors, scalar products and form factors

$$
\mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\operatorname{tr}\left(\mathbb{T}(\bar{u} ; \bar{v}) \mathbb{R}(\bar{u} ; \bar{v}) e_{21}^{\otimes a} \otimes e_{32}^{\otimes b}\right) \in Y(g / 3)
$$

where \mathbb{T} is some product of $T(x)$'s and \mathbb{R} of R-matrices.

Recursion formulas

$$
\begin{aligned}
& \lambda_{2}\left(u_{k}\right) f\left(\bar{v}, u_{k}\right) \mathbb{B}^{a+1, b}(\bar{u} ; \bar{v})=T_{12}\left(u_{k}\right) \mathbb{B}^{a, b}\left(\bar{u}_{k} ; \bar{v}\right)+ \\
& +\sum_{i=1}^{b} g\left(v_{i}, u_{k}\right) f\left(\bar{v}_{i}, v_{i}\right) T_{13}\left(u_{k}\right) \mathbb{B}^{a, b-1}\left(\bar{u}_{k} ; \bar{v}_{i}\right) \\
& \begin{aligned}
& \lambda_{2}\left(v_{k}\right) f\left(v_{k}, \bar{u}\right) \mathbb{B}^{a, b+1}(\bar{u} ; \bar{v})=T_{23}\left(v_{k}\right) \mathbb{B}^{a, b}\left(\bar{u} ; \bar{v}_{k}\right)+ \\
&+\sum_{j=1}^{a} g\left(v_{k}, u_{j}\right) f\left(u_{j}, \bar{u}_{j}\right) T_{13}\left(v_{k}\right) \mathbb{B}^{a-1, b}\left(\bar{u}_{j} ; \bar{v}_{k}\right)
\end{aligned}
\end{aligned}
$$

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BV s

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Explicit formulas

$\mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\sum \frac{\mathrm{K}_{k}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right)}{\lambda_{2}\left(\bar{v}_{\text {II }}\right) \lambda_{2}(\bar{u})} \frac{f\left(\bar{v}_{\text {II }}, \bar{v}_{\mathrm{I}}\right) f\left(\bar{u}_{\text {II }}, \bar{u}_{\mathrm{I}}\right)}{f\left(\bar{v}_{\text {II }}, \bar{u}\right) f\left(\bar{v}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right)} T_{12}\left(\bar{u}_{\text {II }}\right) T_{13}\left(\bar{u}_{\mathrm{I}}\right) T_{23}\left(\bar{v}_{\text {II }}\right)|0\rangle$

Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

All these formulas are related

- Explicit expressions obey the recursion formulas
- Trace formula obeys the recursion formulas

Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

- Recursion formulas uniquely fix the BVs, once $\mathbb{B}^{a, 0}(\bar{u},$.$) or \mathbb{B}^{0, b}(., \bar{v})$ are known.

Bethe vectors $\mathbb{B}^{a, b}(\bar{u} ; \bar{v}),|\bar{u}|=a,|\bar{v}|=b$

- On-shell BVs: \bar{u}, \bar{v} obey BAEs so that

$$
t(x) \mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\tau(x \mid \bar{u} ; \bar{v}) \mathbb{B}^{a, b}(\bar{u} ; \bar{v})
$$

- Off-shell BVs: \bar{u}, \bar{v} are left free

Dual Bethe vectors $\mathbb{C}^{a, b}(\bar{u} ; \bar{v}),|\bar{u}|=a,|\bar{v}|=b$

- On-shell dual BVs: \bar{u}, \bar{v} obey BAEs so that

$$
\mathbb{C}^{a, b}(\bar{u} ; \bar{v}) t(x)=\tau(x \mid \bar{u} ; \bar{v}) \mathbb{C}^{a, b}(\bar{u} ; \bar{v})
$$

- Off-shell dual BVs: \bar{u}, \bar{v} are left free

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Correlation functions

How to compute $\mathcal{O}_{\mathbb{C}, \mathbb{B}}=\langle\mathbb{C}| \mathcal{O}|\mathbb{B}\rangle$?

If $|\mathbb{B}\rangle$ is a complete basis (of transfer matrix eigenvectors), then

$$
\begin{equation*}
\mathcal{O}|\mathbb{B}\rangle=\sum_{\mathbb{B}^{\prime}} \mathbb{O}_{\mathbb{B} \mathbb{B}^{\prime}}\left|\mathbb{B}^{\prime}\right\rangle \tag{1}
\end{equation*}
$$

\rightarrow what is needed is $\left\langle\mathbb{C} \mid \mathbb{B}^{\prime}\right\rangle$ and (1)

$$
\text { Local operators: } \mathcal{O}=\sum_{\ell=1}^{L} \sum_{i, j=1}^{3} \mathcal{O}_{i j}^{(\ell)} e_{i j}^{\ell} \Rightarrow\langle\mathbb{C}| e_{i j}^{\ell}|\mathbb{B}\rangle
$$

Further simplification: QISM

Expression of $e_{i j}^{\ell}, i, j=1,2,3$ and $\ell=1, \ldots L$, in terms of monodromy entries $T_{k l}(x)$ ['00 Maillet \& Terras]:

$$
e_{i j}^{\ell}=(t(0))^{\ell-1} T_{i j}(0)(t(0))^{-\ell}
$$

\Rightarrow we need "only" $T_{k l}(x) \mathbb{B}^{a, b}(\bar{u} ; \bar{v})$ and $\quad \mathbb{C}^{a, b}(\bar{w} ; \bar{z}) \mathbb{B}^{a, b}(\bar{u} ; \bar{v})$

Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General
background
Plan of the talk
Notations
Bethe vectors

Correlation

functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs
Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Multiple actions of $T_{i j}(\bar{x})$ on $\mathbb{B}^{a, b}(\bar{u} ; \bar{v})$
Spin chains based on (quantum) $\mathbf{g l}(3)$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General
background
Plan of the talk

$$
T_{12}(\bar{x}) \mathbb{B}^{a, b}(\bar{u} ; \bar{v})=(-1)^{n} \lambda_{2}(\bar{x}) \sum f\left(\bar{\xi}_{\Pi}, \bar{\xi}_{\mathrm{I}}\right) \mathrm{K}_{n}\left(\bar{\xi}_{\mathrm{I}} \mid \bar{x}+c\right) \mathbb{B}^{a+n, b}\left(\bar{\eta} ; \bar{\xi}_{\Pi}\right)
$$

Sum on partitions $\bar{\xi}=\left\{\bar{\xi}_{\mathrm{I}} ; \bar{\xi}_{\mathrm{II}}\right\}$ with $\left|\bar{\xi}_{\mathrm{I}}\right|=n$

$$
T_{23}(\bar{x}) \mathbb{B}^{a, b}(\bar{u} ; \bar{v})=(-1)^{n} \lambda_{2}(\bar{x}) \sum f\left(\bar{\eta}_{\mathrm{I}}, \bar{\eta}_{\mathrm{II}}\right) \mathrm{K}_{n}\left(\bar{x} \mid \bar{\eta}_{\mathrm{I}}+c\right) \mathbb{B}^{a, b+n}\left(\bar{\eta}_{\mathrm{I}} ; \bar{\xi}\right) .
$$

Sum on partitions $\bar{\eta}=\left\{\bar{\eta}_{\mathrm{I}} ; \bar{\eta}_{\mathrm{I}}\right\}$ with $\left|\bar{\eta}_{\mathrm{I}}\right|=n$

Imply recursion relations as a subcase ($\mathrm{n}=1$)
Similar expressions for any $T_{i j}(\bar{x})$ and for dual BVs

Notations

Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on $\mathbf{B V s}$

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Scalar products of BV s

$$
\mathcal{S}_{a, b} \equiv \mathcal{S}_{a, b}\left(\bar{u}^{C}, \bar{u}^{B} \mid \bar{v}^{C}, \bar{v}^{B}\right)=\mathbb{C}^{a, b}\left(\bar{u}^{C} ; \bar{v}^{C}\right) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right)
$$

Spin chains based
on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy
Superscripts ${ }^{B}$ and ${ }^{C}$ to denote different sets of parameters!

General formula given by Reshetikhin

$$
\begin{aligned}
& \mathcal{S}_{a, b}=\sum r_{1}\left(\bar{u}_{\mathrm{I}}^{B}\right) r_{1}\left(\bar{u}_{\mathrm{II}}^{C}\right) r_{3}\left(\bar{v}_{\mathrm{I}}^{B}\right) r_{3}\left(\bar{v}_{\text {II }}^{C}\right) \\
& \times f\left(\bar{u}_{\text {I }}^{C}, \bar{u}_{\text {II }}^{C}\right) f\left(\bar{u}_{\text {II }}^{B}, \bar{u}_{\text {I }}^{B}\right) f\left(\bar{v}_{\text {II }}^{C}, \bar{v}_{\text {I }}^{C}\right) f\left(\bar{v}_{\text {I }}^{B}, \bar{v}_{\text {II }}^{B}\right) f\left(\bar{v}_{\text {I }}^{C}, \bar{u}_{\text {I }}^{C}\right) f\left(\bar{v}_{\text {II }}^{B}, \bar{u}_{\text {II }}^{B}\right) \\
& \times Z_{a-k, n}\left(\bar{u}_{I I}^{C} ; \bar{u}_{\mathrm{II}}^{B} \mid \bar{v}_{\mathrm{I}}^{C} ; \bar{v}_{\mathrm{I}}^{B}\right) Z_{k, b-n}\left(\bar{u}_{\mathrm{I}}^{B} ; \bar{u}_{\mathrm{I}}^{C} \mid \bar{v}_{\mathrm{II}}^{B} ; \bar{v}_{\mathrm{II}}^{C}\right) \\
& \bar{u}^{B}=\left\{\bar{u}_{\mathrm{I}}^{B}, \bar{u}_{\mathrm{I}}^{B}\right\}, \bar{u}^{C}=\left\{\bar{u}_{\mathrm{I}}^{C}, \bar{u}_{\mathrm{I}}^{C}\right\} \text { with }\left|\bar{u}_{\mathrm{I}}^{B}\right|=\left|\bar{u}_{\mathrm{I}}^{C}\right|=k \text { for } k=0, \ldots, a \\
& \bar{v}^{B}=\left\{\bar{v}_{\mathrm{I}}^{B}, \bar{v}_{\mathrm{II}}^{B}\right\}, \bar{v}^{C}=\left\{\bar{v}_{\mathrm{I}}^{C}, \bar{v}_{\mathrm{II}}^{C}\right\} \text { with }\left|\bar{v}_{\mathrm{I}}^{B}\right|=\left|\bar{v}_{\mathrm{I}}^{C}\right|=n \text { for } n=0, \ldots, b \text {. }
\end{aligned}
$$

$Z_{a, b}$ so-called highest coefficient

$$
Z_{a, b}(\bar{t} ; \bar{x} \mid \bar{s} ; \bar{y})=(-1)^{b} \sum K_{b}\left(\bar{s}-c \mid \bar{w}_{\mathrm{I}}\right) K_{a}\left(\bar{w}_{\text {II }} \mid \bar{t}\right) K_{b}\left(\bar{y} \mid \bar{w}_{\mathrm{I}}\right) f\left(\bar{w}_{\mathrm{I}}, \bar{w}_{\text {II }}\right)
$$

But $\mathcal{S}_{a, b}$ difficult to handle.....

General

background

General

background
Plan of the talk
Notations
Bethe vectors

Correlation

functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Here we consider the scalar product of an on-shell Bethe vector

$$
t(x) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right)=\tau\left(x \mid \bar{u}^{B}, \bar{v}^{B}\right) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right) \quad \text { and BAEs }
$$

with a twisted dual on-shell Bethe vector

$$
\mathbb{C}_{\kappa}^{a, b}\left(\bar{u}^{C} ; \bar{v}^{C}\right) t_{\kappa}(x)=\tau_{\kappa}\left(x \mid \bar{u}^{C}, \bar{v}^{C}\right) \mathbb{C}_{\kappa}^{a, b}\left(\bar{u}^{C} ; \bar{v}^{C}\right)
$$

with twisted BAEs

$$
\begin{aligned}
& t_{\kappa}(x)=\operatorname{tr}(M T(x)) \quad \text { with } \quad M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \kappa & 0 \\
0 & 0 & 1
\end{array}\right) \\
& t_{\kappa}(x)=T_{11}(x)+\kappa T_{22}(x)+T_{33}(x)
\end{aligned}
$$

$$
\mathcal{S}_{a, b} \equiv \mathcal{S}_{a, b}\left(\bar{u}^{C}, \bar{u}^{B} \mid \bar{v}^{C}, \bar{v}^{B}\right)=\mathbb{C}_{\kappa}^{a, b}\left(\bar{u}^{C} ; \bar{v}^{C}\right) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right)
$$

Spin chains based on (quantum) $\mathbf{g l}(3)$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

$$
\begin{aligned}
\mathcal{S}_{a, b}= & f\left(\bar{v}^{C}, \bar{u}^{C}\right) f\left(\bar{v}^{B}, \bar{u}^{B}\right) t\left(\bar{v}^{C}, \bar{u}^{B}\right) \Delta_{a}^{\prime}\left(\bar{u}^{C}\right) \Delta_{a}\left(\bar{u}^{B}\right) \Delta_{b}^{\prime}\left(\bar{v}^{C}\right) \Delta_{b}\left(\bar{v}^{B}\right) \\
& \times \operatorname{det}_{a+b}^{\mathcal{M}}
\end{aligned}
$$

$$
\Delta_{n}^{\prime}(\bar{x})=\prod_{j>k}^{n} g\left(x_{j}, x_{k}\right), \quad \Delta_{n}(\bar{y})=\prod_{j<k}^{n} g\left(y_{j}, y_{k}\right)
$$

\mathcal{M} is a $(a+b) \times(a+b)$ matrix. For $\bar{y}=\left\{\bar{u}^{B}, \bar{v}^{C}\right\}:$

$$
\begin{aligned}
\mathcal{M}_{j, k} & =\frac{c}{g\left(y_{k}, \bar{u}^{C}\right) g\left(\bar{v}^{C}, y_{k}\right)} \frac{\partial \tau_{\kappa}\left(y_{k} \mid \bar{u}^{C}, \bar{v}^{C}\right)}{\partial u_{j}^{C}}, \quad j=1, \ldots, a, \\
\mathcal{M}_{a+j, k} & =\frac{-c}{g\left(y_{k}, \bar{u}^{B}\right) g\left(\bar{v}^{B}, y_{k}\right)} \frac{\partial \tau\left(y_{k} \mid \bar{u}^{B}, \bar{v}^{B}\right)}{\partial v_{j}^{B}}, \quad j=1, \ldots, b .
\end{aligned}
$$

Similar expression for $\mathcal{S}_{a, b}$ when considering a general twist

$$
t_{\bar{\kappa}}(x)=\kappa_{1} T_{11}(x)+\kappa_{2} T_{22}(x)+\kappa_{3} T_{33}(x)
$$

but up to terms $\left(\kappa_{i}-1\right)\left(\kappa_{j}-1\right), i, j=1,2,3$

Spin chains based
on (quantum) $\mathbf{g l}(3)$ algebras:
Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Form factors (off-diagonal case)

$$
\begin{aligned}
& \mathcal{F}_{a, b}^{(i, j)}(z)=\mathbb{C}^{a^{\prime}, b^{\prime}}\left(\bar{u}^{C} ; \bar{v}^{C}\right) T_{i j}(z) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right), \\
& a^{\prime}=a+\delta_{i 1}-\delta_{j 1}, \quad b^{\prime}=b+\delta_{j 3}-\delta_{i 3}, \quad i, j=1,2,3 .
\end{aligned}
$$

Both $\mathbb{C}^{a^{\prime}, b^{\prime}}\left(\bar{u}^{C} ; \bar{v}^{C}\right)$ and $\mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right)$ are on-shell Bethe vectors

$$
\begin{gathered}
\mathcal{F}_{a, b}^{(1,2)}(z)=\mathcal{H}_{a^{\prime}, b} \operatorname{det}_{a^{\prime}+b} \mathcal{N}, \\
\mathcal{H}_{a^{\prime}, b}=\frac{\Delta_{a^{\prime}}^{\prime}\left(\bar{u}^{C}\right) \Delta_{b}^{\prime}\left(\bar{v}^{B}\right) \Delta_{a+b+1}(\bar{x})}{h\left(\bar{v}^{C}, \bar{u}^{B}\right)}, \quad \bar{x}=\left\{\bar{u}^{B}, \bar{v}^{C}, z\right\} \\
\mathcal{N}_{j, k}= \\
\frac{c}{g\left(x_{k}, \bar{u}^{C}\right) g\left(\bar{v}^{C}, x_{k}\right)} \frac{\partial \tau\left(x_{k} \mid \bar{u}^{C}, \bar{v}^{C}\right)}{\partial u_{j}^{C}}, \quad j=1, \ldots, a^{\prime}, \\
\mathcal{N}_{a^{\prime}+j, k}= \\
\frac{-c}{g\left(x_{k}, \bar{u}^{B}\right) g\left(\bar{v}^{B}, x_{k}\right)} \frac{\partial \tau\left(x_{k} \mid \bar{u}^{B}, \bar{v}^{B}\right)}{\partial v_{j}^{B}}, \quad j=1, \ldots, b .
\end{gathered}
$$

Similar expression for all $\mathcal{F}_{a, b}^{(i, j)}(z),|i-j|=1$.

Spin chains based
on (quantum) $\mathbf{g}(\mathbf{3})$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Form factors (diagonal case)

Spin chains based
on (quantum) $\mathbf{g}(\mathbf{3})$ algebras:
Bethe vectors, scalar products and form factors

Eric Ragoucy

General

$$
\mathcal{N}_{j, k}^{(s)}=\mathcal{N}_{j, k}, \quad j=1, \ldots, a+b, \quad k=1, \ldots, a+b+1
$$

The last line of $\mathcal{N}^{(s)}$ depends on s, for instance:

$$
\begin{aligned}
& \mathcal{N}_{a+b+1, k}^{(1)}=h\left(x_{k}, \bar{u}^{B}\right) h\left(\bar{v}^{C}, x_{k}\right)\left\{\frac{u_{k}^{B}}{c}\left(\frac{f\left(\bar{v}^{B}, u_{k}^{B}\right)}{f\left(\bar{v}^{C}, u_{k}^{B}\right)}-1\right)-1\right\} \\
& \quad k=1, \ldots, a ; \\
& \mathcal{N}_{a+b+1, a+k}^{(1)}=h\left(x_{a+k}, \bar{u}^{B}\right) h\left(\bar{v}^{C}, x_{a+k}\right)\left\{\frac{v_{k}^{C}+c}{c}\left(\frac{f\left(v_{k}^{C}, \bar{u}^{C}\right)}{f\left(v_{k}^{C}, \bar{u}^{B}\right)}-1\right)-1\right\}
\end{aligned}
$$

$$
k=1, \ldots, b
$$

$$
\mathcal{N}_{a+b+1, a+b+1}^{(1)}=\frac{r_{1}(z) f\left(\bar{u}^{B}, z\right)}{g\left(\bar{v}^{C}, z\right) g\left(z, \bar{u}^{B}\right)}
$$

$$
\begin{aligned}
& \mathcal{N}^{(3)} \text { has a similar expression; } \\
& \mathcal{N}_{a+b+1, k}^{(2)}=h\left(x_{k}, \bar{u}^{B}\right) h\left(\bar{v}^{C}, x_{k}\right), k=1, \ldots, a+b+1 .
\end{aligned}
$$

background
General
background
Plan of the talk
Notations
Bethe vectors

Correlation

functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)

Form factors

(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Form factors (remaining)

Spin chains based

- $\mathcal{F}_{a, b}^{(i, j)}(z),|i-j|=1$, are computed by brute force, using multiple action of $T_{i j}$'s
- $\mathcal{F}_{a, b}^{(s, s)}(z)$ are computed using the trick of "twisted BVs":

$$
\mathcal{F}_{a, b}^{(s, s)}(z)=\frac{d}{d \kappa_{s}}\left[\mathbb{C}_{\bar{\kappa}}^{a, b}\left(\bar{u}^{C} ; \bar{v}^{C}\right)\left(t_{\bar{\kappa}}(z)-t(z)\right) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right)\right]_{\bar{\kappa}=1}
$$

- $\mathcal{F}_{a, b}^{(1,3)}(z)$ and $\mathcal{F}_{a, b}^{(3,1)}(z)$ are not computable by these two methods: one needs a new one. We may have found a general one that could help to compute all the form factors in an easy way.
More information soon...

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Summary

For models with $G L(3)$ invariant R-matrix, we got:
Spin chains based on (quantum) $\mathbf{g}(\mathbf{3})$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

- Explicit expressions for (off-shell) Bethe vectors and their duals
- Multiple action of monodromy elements on these BVs

Both results in term of Izergin-Korepin determinants and sums of partitions of sets of Bethe parameters

- Calculation of the scalar product of (twisted) on-shell BVs
- Calculation of the form factors of $T_{i j}(x), i, j=1,2,3$

Both results in term of a single determinant (and product of scalar functions)

General

background
General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BV s

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Case of trigonometric R-matrices

> Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background

- Explicit expression of BV for $U_{q}\left(g /_{N}\right)$ arXiv:1310.3253 Use of projectors method in current realization of $U_{q}\left(g I_{N}\right)$, see works of Khoroshkin, Pakuliak and collaborators arXiv:math/0610398, arXiv:math/0610433, arXiv:math/0610517, arXiv:0711.2819, arXiv:0810.3135, arXiv:1012.1455, etc...
- Multiple actions of $T_{i j}(\bar{w})$ for $U_{q}(g / 3)$ arXiv:1304.7602
- Scalar products in $U_{q}(g / 3)$: q-deformed Reshethekhin like formula arXiv:1311.3500, arXiv:1401.4355

General
background
Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BV s

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Conclusion: still a lot to do...

Spin chains based on (quantum) $\mathbf{g l}(3)$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General

- Calculation of the scalar product of generic off-shell BVs (as a single determinant)
See for instance recent work of Wheeler, arXiv:1306.0552
- Complete calculation of correlation functions, asymptotics, etc...
- Generalization to other models
- Calculation of the form factors of $T_{j k}(x)$, for $U_{q}\left(g g_{3}\right)$
- Case of $U_{q}\left(g I_{N}\right)$ algebras

Plan of the talk
Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BV s

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Spin chains based
on (quantum) $\mathbf{g l}(3)$ algebras:
Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background
General
background
Plan of the talk

Thank you!

Notations
Bethe vectors
Correlation
functions
Multiple actions of $T_{i j}(\bar{x})$ on BV s

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices
Conclusion

$\mathcal{F}_{a, b}^{(1,3)}(z)$ form factor

Spin chains based
on (quantum) $\mathbf{g}(\mathbf{3})$ algebras:
Bethe vectors, scalar products and form factors

Eric Ragoucy

$$
\begin{aligned}
\mathcal{F}_{a, b}^{(1,3)}(z) & =\mathbb{C}^{a+1, b+1}\left(\bar{u}^{C} ; \bar{v}^{C}\right) T_{13}(z) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right) \\
& =(-1)^{b+1} \mathcal{H}_{a+1, b} \cdot \operatorname{det}_{a+b+2} \mathcal{N}^{(1,3)} \\
\mathcal{N}_{j, k}^{(1,3)} & =\mathcal{N}_{j, k}, \quad j, k=1, \ldots, a+b+1 \\
\mathcal{N}_{a+b+2, k}^{(1,3)} & =(-1)^{b+1} r_{3}\left(x_{k}\right) \frac{h\left(x_{k}, \bar{v}^{B}\right)}{g\left(x_{k}, \bar{u}^{B}\right)}+h\left(\bar{v}^{B}, x_{k}\right) h\left(x_{k}, \bar{u}^{B}\right)
\end{aligned}
$$

General

background
General
background
Plan of the talk

Notations

Bethe vectors

Correlation

functions
Multiple actions of $T_{i j}(\bar{x})$ on BV s

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Explicit formulas

$$
\begin{aligned}
& \mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\sum \frac{\mathrm{K}_{k}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right)}{\lambda_{2}\left(\bar{v}_{\mathrm{I}}\right) \lambda_{2}(\bar{u})} \frac{f\left(\overline{\mathrm{v}}_{\mathrm{I}}, \bar{v}_{\mathrm{I}}\right) f\left(\bar{u}_{\Pi}, \bar{u}_{\mathrm{I}}\right)}{f\left(\bar{v}_{\mathrm{I}}, \bar{u}\right) f\left(\bar{v}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right)} T_{12}\left(\bar{u}_{\mathrm{I}}\right) T_{13}\left(\bar{u}_{\mathrm{I}}\right) T_{23}\left(\bar{v}_{\mathrm{I}}\right)|0\rangle \\
& \mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\sum \frac{\mathrm{K}_{k}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right)}{\lambda_{2}\left(\bar{u}_{\mathrm{I}}\right) \lambda_{2}(\bar{v})} \frac{f\left(\bar{v}_{\mathrm{I}}, \bar{v}_{\mathrm{I}}\right) f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right)}{f\left(\bar{v}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right) f\left(\bar{v}, \bar{u}_{\mathrm{I}}\right)} T_{23}\left(\bar{v}_{\text {II }}\right) T_{13}\left(\bar{v}_{\mathrm{I}}\right) T_{12}\left(\bar{u}_{\mathrm{I}}\right)|0\rangle \\
& \mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\sum \frac{\mathrm{K}_{\mathrm{k}}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right)}{\lambda_{2}\left(\bar{v}_{\mathrm{I}}\right) \lambda_{2}(\bar{u})} \frac{f\left(\bar{v}_{\mathrm{I}}, \bar{v}_{\mathrm{I}}\right) f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right)}{f(\bar{v}, \bar{u})} T_{13}\left(\bar{u}_{\mathrm{I}}\right) T_{12}\left(\bar{u}_{\mathrm{I}}\right) T_{23}\left(\bar{v}_{\mathrm{I}}\right)|0\rangle \\
& \mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\sum \frac{\mathrm{K}_{k}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right)}{\lambda_{2}\left(\bar{u}_{\mathrm{I}}\right) \lambda_{2}(\bar{v})} \frac{f\left(\overline{\mathrm{v}}_{\mathrm{I}}, \bar{v}_{\mathrm{I}}\right) f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right)}{f(\bar{v}, \bar{u})} T_{13}\left(\bar{v}_{\mathrm{I}}\right) T_{23}\left(\overline{\mathrm{v}}_{\mathrm{II}}\right) T_{12}\left(\bar{u}_{\mathrm{I}}\right)|0\rangle
\end{aligned}
$$

The sums are taken over partitions of the sets
$\bar{u} \Rightarrow\left\{\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right\}$ and $\bar{v} \Rightarrow\left\{\bar{v}_{\mathrm{I}}, \bar{v}_{I}\right\}$ with $0 \leq\left|\bar{u}_{\mathrm{I}}\right|=\left|\bar{v}_{\mathrm{I}}\right|=k \leq \min (a, b)$.
$\mathrm{K}_{k}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right)$ is the Izergin-Korepin determinant

$$
\mathrm{K}_{k}(\bar{x} \mid \bar{y})=\prod_{\ell<m}^{k} g\left(x_{\ell}, x_{m}\right) g\left(y_{m}, y_{\ell}\right) \cdot h(\bar{x}, \bar{y}) \operatorname{det}_{k}\left[t\left(x_{i}, y_{j}\right)\right] .
$$

Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background

General

background
Plan of the talk

Notations

Bethe vectors

Correlation

functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

Diagonal blocks

$$
\begin{array}{rrr}
\mathcal{M}^{(u)}\left(u_{j}^{C}, u_{k}^{B}\right)= & h\left(\bar{v}^{C}, u_{k}^{B}\right) h\left(u_{k}^{B}, \bar{u}^{C}\right)\left[\kappa t\left(u_{k}^{B}, u_{j}^{C}\right)\right. \\
a \times a \text { block } & \left.+t\left(u_{j}^{C}, u_{k}^{B}\right) \frac{f\left(\bar{v}^{B}, u_{k}^{B}\right)}{f\left(\bar{v}^{C}, u_{k}^{B}\right)} \frac{h\left(\bar{u}^{C}, u_{k}^{B}\right) h\left(u_{k}^{B}, \bar{u}^{B}\right)}{h\left(u_{k}^{B}, \bar{u}^{C}\right) h\left(\bar{u}^{B}, u_{k}^{B}\right)}\right] \\
\mathcal{M}^{(v)}\left(v_{j}^{B}, v_{k}^{C}\right)= & h\left(v_{k}^{C}, \bar{u}^{B}\right) h\left(\bar{v}^{B}, v_{k}^{C}\right)\left[t\left(v_{j}^{B}, v_{k}^{C}\right)\right. \\
b \times b \text { block } & \left.+\kappa t\left(v_{k}^{C}, v_{j}^{B}\right) \frac{f\left(v_{k}^{C}, \bar{u}^{C}\right)}{f\left(v_{k}^{C},,^{B}\right)} \frac{h\left(\bar{v}^{C}, v_{k}^{C}\right) h\left(v_{k}^{C}, \bar{v}^{B}\right)}{h\left(v_{k}^{c}, \bar{v}^{C}\right) h\left(\bar{v}^{B}, v_{k}^{C}\right)}\right]
\end{array}
$$

Off-diagonal blocks

$$
\begin{array}{ll}
\mathcal{M}^{(u)}\left(u_{j}^{C}, v_{k}^{C}\right)=\kappa t\left(v_{k}^{C}, u_{j}^{C}\right) h\left(v_{k}^{C}, \bar{u}^{C}\right) h\left(\bar{v}^{C}, v_{k}^{C}\right) & a \times b \text { block } \\
\mathcal{M}^{(v)}\left(v_{j}^{B}, u_{k}^{B}\right)=t\left(v_{j}^{B}, u_{k}^{B}\right) h\left(\bar{v}^{B}, u_{k}^{B}\right) h\left(u_{k}^{B}, \bar{u}^{B}\right) & b \times a \text { block }
\end{array}
$$

Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General

background

General

background
Plan of the talk

Notations

Bethe vectors

Correlation

functions
Multiple actions of $T_{i j}(\bar{x})$ on BVs

Scalar products of BVs

Form factors
(off-diagonal case)
Form factors
(diagonal case)
Form factors
(remaining)
Summary
Case of
trigonometric
R-matrices

