Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

LAPTH, Annecy, France

Bad Honnef 2014

with S. Belliard (L2C, Montpellier), S. Pakuliak (JINR, Dubna) and N. Slavnov (Steklov Math. Inst., Moscow)

Spin chains based on (quantum) \(gl(3) \) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General background

Plan of the talk
Notations
Bethe vectors
Correlation functions
Multiple actions of \(T_{ij}(\vec{x}) \) on BVs
Scalar products of BVs
Form factors (off-diagonal case)
Form factors (diagonal case)
Form factors (remaining)
Summary
Case of trigonometric \(R \)-matrices
Conclusion

General background: Integrable spin chains

Rational or trigonometric \(9 \times 9 \) \(R \)-matrix

\[R(x, y) \in V \otimes V \text{ with } V = \text{End}(\mathbb{C}^3) \]

\(R(x, y) \) obeys \textbf{Yang-Baxter equation} (in \(V \otimes V \otimes V \))

\[R^{12}(x_1, x_2) R^{13}(x_1, x_3) R^{23}(x_2, x_3) = R^{23}(x_2, x_3) R^{13}(x_1, x_3) R^{12}(x_1, x_2) \]

It is associated to a quantum group \(\mathcal{A} \) which is:

- The Yangian \(\mathcal{A} = Y(gl_3) \) when \(R(x, y) \) is rational (XXX chain)
- The affine quantum group \(\mathcal{A} = U_q(\widehat{gl}_3) \) when \(R(x, y) \) is trigonometric (XXZ chain)
General background: Integrable spin chains

Rational or trigonometric 9 × 9 R-matrix

\[R(x, y) \in V \otimes V \text{ with } V = \text{End}(\mathbb{C}^3) \]

\[R(x, y) \text{ obeys Yang-Baxter equation (in } V \otimes V \otimes V) \]

\[R^{12}(x_1, x_2) R^{13}(x_1, x_3) R^{23}(x_2, x_3) = R^{23}(x_2, x_3) R^{13}(x_1, x_3) R^{12}(x_1, x_2) \]

It is associated to a quantum group \(\mathcal{A} \) which is:

- The Yangian \(\mathcal{A} = Y(gl_3) \) when \(R(x, y) \) is rational (XXX chain)
- The affine quantum group \(\mathcal{A} = U_q(\hat{gl}_3) \) when \(R(x, y) \) is trigonometric (XXZ chain)

For the talk, rational R-matrix:

\[R(x, y) = I + g(x, y)P \in \text{End}(\mathbb{C}^3) \otimes \text{End}(\mathbb{C}^3) \text{ and } g(x, y) = \frac{c}{x - y} \]

\(I \) is the identity matrix, \(P \) is the permutation matrix between two spaces \(\text{End}(\mathbb{C}^3) \), \(c \) is a constant.
Spin chains based on (quantum) $\mathfrak{gl}(3)$ algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General background

Plan of the talk

Notations

Bethe vectors

Correlation functions

Multiple actions of $T_{ij}(\tilde{\mathbf{x}})$ on BVs

Scalar products of BVs

Form factors (off-diagonal case)

Form factors (diagonal case)

Form factors (remaining)

Summary

Case of trigonometric R-matrices

Conclusion

Monodromy matrix

$$T(x) = \sum_{i,j=1}^{3} e_{ij} \otimes T_{ij}(x) \in \text{End}(\mathbb{C}^3) \otimes \mathcal{A}$$

$T(x)$ obeys the RTT commutation relations:

$$R^{12}(x, y) \ T^1(x) \ T^2(y) = T^2(y) \ T^1(x) \ R^{12}(x, y)$$

This defines the quantum group \mathcal{A}

It leads to an integrable model through the transfer matrix

$$t(x) = tr_0 \ T^0(x) = T_{11}(x) + T_{22}(x) + T_{33}(x) \in \mathcal{A}$$

$$[t(x), t(y)] = 0$$

$$\text{Monodromy matrix}$$
Choice of a $Y(gl_3)$ (lowest weight) representation:

$$T_{jj}(w)|0\rangle = \lambda_j(w)|0\rangle, \quad j = 1, 2, 3 \quad T_{ij}(w)|0\rangle = 0, \quad 1 \leq j < i \leq 3$$

Up to normalisation $T(w) \rightarrow \lambda_2^{-1}(w)T(w)$, only need the ratios

$$r_1(w) = \frac{\lambda_1(w)}{\lambda_2(w)}, \quad r_3(w) = \frac{\lambda_3(w)}{\lambda_2(w)}.$$

where r_1 and r_3 are free functional parameters.
Aim

Compute the correlation functions $< O_1 \cdot \cdot \cdot O_n > = tr(O_1 \cdot \cdot \cdot O_n)$ for some local operators $O_1, \cdot \cdot \cdot, O_n$

If one has a basis of the space of states \mathcal{H}, $\{|\psi>\}$, then it is enough to compute $< \psi'|O_1 \cdot \cdot \cdot O_n|\psi>$
Since we have a basis $O|\psi> = \sum <\psi'|O|\psi> |\psi'>$, and we need "only" $<\psi|\psi'>$
Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General background

Plan of the talk

Notations

Bethe vectors

Correlation functions

Multiple actions of $T_{ij}(\bar{x})$ on Bethe vectors

Scalar products of Bethe vectors

Form factors (off-diagonal case)

Form factors (diagonal case)

Form factors (remaining)

Summary

Case of trigonometric R-matrices

Conclusion

Aim

- Compute Bethe vectors (BVs), eigenvectors of $t(x)$:

 $$ t(x) B^{a,b}(\bar{u}, \bar{v}) = \tau(x|\bar{u}, \bar{v}) B^{a,b}(\bar{u}, \bar{v}) \Rightarrow \text{Bethe ansatz eqs (BAE)} $$

- Action of $T_{ij}(\bar{x})$ on $B^{a,b}(\bar{u}, \bar{v})$

- Scalar product of off-shell BVs (without BAE)

- Form factors $C^{a,b}(\bar{t}, \bar{s}) T_{ij}(\bar{x}) B^{a,b}(\bar{u}, \bar{v})$
Plan of the talk

- Bethe vectors (BVs)
- Multiple actions of Yangian generators on BVs
- Scalar products of BVs
- Form factors and correlation functions
- Conclusion

Calculations are rather technical ⇒ results only!

Presentation for $Y(gl_3)$ but most of the results are valid for $U_q(gl_3)$ (see at the end)
Notations

Apart from the functions \(g(x, y) = \frac{c}{x - y} \), \(r_1(x) \) and \(r_3(x) \) we introduce

\[
\begin{align*}
 f(x, y) &= \frac{x - y + c}{x - y} , \\
 h(x, y) &= \frac{f(x, y)}{g(x, y)} , \\
 t(x, y) &= \frac{g(x, y)}{h(x, y)} .
\end{align*}
\]
Apart from the functions $g(x, y) = \frac{c}{x - y}$, $r_1(x)$ and $r_3(x)$ we introduce

$$f(x, y) = \frac{x - y + c}{x - y}, \quad h(x, y) = \frac{f(x, y)}{g(x, y)}, \quad t(x, y) = \frac{g(x, y)}{h(x, y)}.$$
Apart from the functions \(g(x, y) = \frac{c}{x - y} \), \(r_1(x) \) and \(r_3(x) \) we introduce

\[
f(x, y) = \frac{x - y + c}{x - y}, \quad h(x, y) = \frac{f(x, y)}{g(x, y)}, \quad t(x, y) = \frac{g(x, y)}{h(x, y)}.
\]

- "bar" always denote sets of variables: \(\bar{w}, \bar{u}, \bar{v} \) etc..
- \(|.|\) is the dimension of a set: \(\bar{w} = \{w_1, w_2\} \Rightarrow |\bar{w}| = 2 \), etc...
- Individual elements of the sets have latin subscripts: \(w_j, u_k, \) etc..
- Subsets of variables are denoted by roman indices: \(\bar{u}_I, \bar{v}_I, \bar{w}_I, \) etc.
- Special case: \(\bar{u}_j = \bar{u} \setminus \{u_j\} \), \(\bar{w}_k = \bar{w} \setminus \{w_k\} \), etc...
Bethe vectors

Framework: Algebraic-Nested Bethe ansatz (Leningrad school 80’s)
[Faddeev, Kulish, Reshetikhin, Sklyanin, Takhtajan]

On-shell Bethe vectors

\[t(x) \mathcal{B}^{a,b}(\bar{u}; \bar{v}) = \tau(x|\bar{u}; \bar{v}) \mathcal{B}^{a,b}(\bar{u}; \bar{v}) \]

\(\bar{u} = \{u_1, ..., u_a\} \) and \(\bar{v} = \{v_1, ..., v_b\} \) are the Bethe parameters. \(t(x) \)-eigenvectors provided \(\bar{u} \) and \(\bar{v} \) obey the Bethe equations (BAEs):

\[
\begin{align*}
 r_1(\bar{u}_I) &= \frac{f(\bar{u}_I, \bar{u}_\Pi)}{f(\bar{u}_\Pi, \bar{u}_I)} f(\bar{v}, \bar{u}_I), \\
 r_3(\bar{v}_I) &= \frac{f(\bar{v}_\Pi, \bar{v}_I)}{f(\bar{v}_I, \bar{v}_\Pi)} f(\bar{v}_I, \bar{u}).
\end{align*}
\]

that hold for arbitrary partitions of the sets \(\bar{u} \) and \(\bar{v} \) into subsets \(\{\bar{u}_I, \bar{u}_\Pi\} \) and \(\{\bar{v}_I, \bar{v}_\Pi\} \).
Known formulas: Trace formula ['07 Tarasov & Varchenko]

$$B^{a,b}(\bar{u}; \bar{v}) = tr \left(T(\bar{u}; \bar{v}) R(\bar{u}; \bar{v}) e_{21}^a \otimes e_{32}^b \right) \in \mathcal{Y}(gl_3)$$

where T is some product of $T(x)$’s and R of R-matrices.

Recursion formulas

$$\lambda_2(u_k) f(\bar{v}, u_k) B^{a+1,b}(\bar{u}; \bar{v}) = T_{12}(u_k) B^{a,b}(\bar{u}_k; \bar{v}) +$$

$$+ \sum_{i=1}^{b} g(v_i, u_k) f(\bar{v}_i, v_i) T_{13}(u_k) B^{a,b-1}(\bar{u}_k; \bar{v}_i),$$

$$\lambda_2(v_k) f(\bar{v}, v_k) B^{a,b+1}(\bar{u}; \bar{v}) = T_{23}(v_k) B^{a,b}(\bar{u}; \bar{v}_k) +$$

$$+ \sum_{j=1}^{a} g(v_k, u_j) f(u_j, \bar{u}_j) T_{13}(v_k) B^{a-1,b}(\bar{u}_j; \bar{v}_k).$$
Explicit formulas

$$B^{a,b}(\vec{u}; \vec{v}) = \sum \frac{K_k(\vec{v}_I|\vec{u}_I)}{\lambda_2(\vec{v}_\Pi)\lambda_2(\vec{u})} \frac{f(\vec{v}_\Pi, \vec{v}_I)f(\vec{u}_\Pi, \vec{u}_I)}{f(\vec{v}_\Pi, \vec{v})f(\vec{v}_I, \vec{u}_I)} T_{12}(\vec{u}_\Pi) T_{13}(\vec{u}_I) T_{23}(\vec{v}_\Pi)|0\rangle$$

Plus others with different order of T_{12}, T_{13}, T_{23}

The sums are taken over partitions of the sets $\vec{u} \Rightarrow \{\vec{u}_I, \vec{u}_\Pi\}$ and $\vec{v} \Rightarrow \{\vec{v}_I, \vec{v}_\Pi\}$ with $0 \leq |\vec{u}_I| = |\vec{v}_I| = k \leq \min(a, b)$.

$K_k(\vec{v}_I|\vec{u}_I)$ is the Izergin–Korepin determinant

$$K_k(\vec{x}|\vec{y}) = \prod_{\ell < m} g(x_\ell, x_m)g(y_m, y_\ell) \cdot h(\vec{x}, \vec{y}) \det_k [t(x_i, y_j)].$$
Spin chains based on (quantum) \(gl(3) \) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General background

Plan of the talk

Notations

Bethe vectors

Correlation functions

Multiple actions of \(T_{ij}(\vec{x}) \) on BVs

Scalar products of BVs

Form factors (off-diagonal case)

Form factors (diagonal case)

Form factors (remaining)

Summary

Case of trigonometric \(R \)-matrices

Conclusion

All these formulas are related

- Explicit expressions obey the recursion formulas
- Trace formula obeys the recursion formulas
- Recursion formulas uniquely fix the BVs, once \(\mathcal{B}_{a,0}(\vec{u},.) \) or \(\mathcal{B}^0,b(.,\vec{v}) \) are known.

| Bethe vectors \(\mathcal{B}_{a,b}(\vec{u};\vec{v}) \), \(|\vec{u}| = a, |\vec{v}| = b\) |
|-----------------------------------|
| **On-shell BVs**: \(\vec{u}, \vec{v} \) obey BAES so that |
| \[t(x) \mathcal{B}_{a,b}(\vec{u};\vec{v}) = \tau(x|\vec{u};\vec{v}) \mathcal{B}_{a,b}(\vec{u};\vec{v}) \] |
| **Off-shell BVs**: \(\vec{u}, \vec{v} \) are left free |

| Dual Bethe vectors \(\mathcal{C}_{a,b}(\vec{u};\vec{v}) \), \(|\vec{u}| = a, |\vec{v}| = b\) |
|-----------------------------------|
| **On-shell dual BVs**: \(\vec{u}, \vec{v} \) obey BAES so that |
| \[\mathcal{C}_{a,b}(\vec{u};\vec{v}) t(x) = \tau(x|\vec{u};\vec{v}) \mathcal{C}_{a,b}(\vec{u};\vec{v}) \] |
| **Off-shell dual BVs**: \(\vec{u}, \vec{v} \) are left free |
Correlation functions

How to compute $\mathcal{O}_{\mathcal{C}, \mathcal{B}} = \langle \mathcal{C} | \mathcal{O} | \mathcal{B} \rangle$?

If $|\mathcal{B}\rangle$ is a complete basis (of transfer matrix eigenvectors), then

$$\mathcal{O} |\mathcal{B}\rangle = \sum_{\mathcal{B}'} \mathcal{O}_{\mathcal{B}\mathcal{B}'} |\mathcal{B}'\rangle$$ \hspace{1cm} (1)

→ what is needed is $\langle \mathcal{C} | \mathcal{B}' \rangle$ and (1)

Local operators: $\mathcal{O} = \sum_{\ell=1}^{L} \sum_{i,j=1}^{3} \mathcal{O}_{ij}^{(\ell)} e_{ij}^{\ell} \Rightarrow \langle \mathcal{C} | e_{ij}^{\ell} | \mathcal{B} \rangle$

Further simplification: QISM

Expression of e_{ij}^{ℓ}, $i, j = 1, 2, 3$ and $\ell = 1, \ldots L$, in terms of monodromy entries $T_{kl}(x)$ [00 Maillet & Terras]:

$$e_{ij}^{\ell} = (t(0))^{\ell-1} T_{ij}(0) (t(0))^{-\ell}$$

⇒ we need "only" $T_{kl}(x) \mathcal{B}^{a,b}(\bar{u}; \bar{v})$ and $\mathcal{C}^{a,b}(\bar{w}; \bar{z}) \mathcal{B}^{a,b}(\bar{u}; \bar{v})$
Multiple actions of $T_{ij}(\bar{x})$ on $\mathbb{B}^{a,b}(\bar{u}; \bar{v})$

$|\bar{x}| = n, \quad \{\bar{u}, \bar{x}\} = \bar{\eta}, \quad |\bar{\eta}| = a + n; \quad \{\bar{v}, \bar{x}\} = \bar{\xi}, \quad |\bar{\xi}| = b + n$

$$T_{13}(\bar{x})\mathbb{B}^{a,b}(\bar{u}; \bar{v}) = \lambda_2(\bar{x}) \mathbb{B}^{a+n,b+n}(\bar{\eta}; \bar{\xi}).$$

$$T_{12}(\bar{x})\mathbb{B}^{a,b}(\bar{u}; \bar{v}) = (-1)^n \lambda_2(\bar{x}) \sum f(\bar{\xi}_I, \bar{\xi}_I) K_n(\bar{\xi}_I|\bar{x} + c) \mathbb{B}^{a+n,b+n}(\bar{\eta}; \bar{\xi}_I).$$

Sum on partitions $\bar{\xi} = \{\bar{\xi}_I; \bar{\xi}_II\}$ with $|\bar{\xi}_I| = n$

$$T_{23}(\bar{x})\mathbb{B}^{a,b}(\bar{u}; \bar{v}) = (-1)^n \lambda_2(\bar{x}) \sum f(\bar{\eta}_I, \bar{\eta}_II) K_n(\bar{x}|\bar{\eta}_I + c) \mathbb{B}^{a,b+n}(\bar{\eta}_II; \bar{\xi}).$$

Sum on partitions $\bar{\eta} = \{\bar{\eta}_I; \bar{\eta}_II\}$ with $|\bar{\eta}_I| = n$

Imply recursion relations as a subcase (n=1)
Similar expressions for any $T_{ij}(\bar{x})$ and for dual BVs
Scalar products of BVs

\[S_{a,b} \equiv S_{a,b}(\bar{u}^C, \bar{u}^B|\bar{v}^C, \bar{v}^B) = \mathbb{C}^{a,b}(\bar{u}^C; \bar{v}^C) \mathbb{B}^{a,b}(\bar{u}^B; \bar{v}^B) \]

Superscripts \(B\) and \(C\) to denote different sets of parameters!

General formula given by Reshetikhin

\[
S_{a,b} = \sum r_1(\bar{u}^B_I)r_1(\bar{u}^C_{\Pi})r_3(\bar{v}^B_I)r_3(\bar{v}^C_{\Pi})
\times f(\bar{u}^C_I, \bar{u}^C_{\Pi})f(\bar{u}^B_{\Pi}, \bar{u}^B_I)f(\bar{v}^C_I, \bar{v}^C_{\Pi})f(\bar{v}^B_I, \bar{v}^B_{\Pi})f(\bar{v}^C_I, \bar{u}^C_I)f(\bar{v}^B_{\Pi}, \bar{u}^B_I)
\times Z_{a-k,n}(\bar{u}^C_{\Pi}; \bar{u}^B_I|\bar{v}^C_I; \bar{v}^B_I)Z_{k,b-n}(\bar{u}^B_I; \bar{u}^C_I|\bar{v}^B_{\Pi}; \bar{v}^C_{\Pi})
\]

\(\bar{u}^B = \{\bar{u}^B_I, \bar{u}^B_{\Pi}\}\), \(\bar{u}^C = \{\bar{u}^C_I, \bar{u}^C_{\Pi}\}\) with \(|\bar{u}^B_I| = |\bar{u}^C_I| = k\) for \(k = 0, \ldots, a\)

\(\bar{v}^B = \{\bar{v}^B_I, \bar{v}^B_{\Pi}\}\), \(\bar{v}^C = \{\bar{v}^C_I, \bar{v}^C_{\Pi}\}\) with \(|\bar{v}^B_I| = |\bar{v}^C_I| = n\) for \(n = 0, \ldots, b\).

\(Z_{a,b}\) so-called highest coefficient

\[
Z_{a,b}(\bar{t}; \bar{x}|\bar{s}; \bar{y}) = (-1)^b \sum K_b(\bar{s} - c|\bar{w}_I)K_a(\bar{w}_{\Pi}|\bar{t})K_b(\bar{y}|\bar{w}_I)f(\bar{w}_I, \bar{w}_{\Pi}).
\]

But \(S_{a,b}\) difficult to handle.....
Here we consider the scalar product of an on-shell Bethe vector
\[t(x) \mathbb{B}^{a,b}(\bar{u}^B; \bar{v}^B) = \tau(x|\bar{u}^B, \bar{v}^B) \mathbb{B}^{a,b}(\bar{u}^B; \bar{v}^B) \] and BAEs with a twisted dual on-shell Bethe vector
\[C^{a,b}_\kappa(\bar{u}^C; \bar{v}^C) t_\kappa(x) = \tau_\kappa(x|\bar{u}^C, \bar{v}^C) C^{a,b}_\kappa(\bar{u}^C; \bar{v}^C) \]
with twisted BAEs
\[t_\kappa(x) = \text{tr}(M T(x)) \quad \text{with} \quad M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \kappa & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
\[t_\kappa(x) = T_{11}(x) + \kappa T_{22}(x) + T_{33}(x) \]
\[S_{a,b} \equiv S_{a,b}(\bar{u}^C, \bar{u}^B|\bar{v}^C, \bar{v}^B) = C^{a,b}_\kappa(\bar{u}^C; \bar{v}^C) \mathbb{B}^{a,b}(\bar{u}^B; \bar{v}^B) \]
Spin chains based on (quantum) \(gl(3) \) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General background

Plan of the talk

Notations

Bethe vectors

Correlation functions

Multiple actions of \(T_{ij}(x) \) on BVs

Scalar products of BVs

Form factors (off-diagonal case)

Form factors (diagonal case)

Form factors (remaining)

Summary

Case of trigonometric \(R \)-matrices

Conclusion

\[
S_{a,b} = f(\vec{v}^C, \vec{u}^C)f(\vec{v}^B, \vec{u}^B)t(\vec{v}^C, \vec{u}^B) \Delta'_a(\vec{u}^C) \Delta_a(\vec{u}^B) \Delta'_b(\vec{v}^C) \Delta_b(\vec{v}^B) \times \det_{a+b} \mathcal{M},
\]

\[
\Delta'_n(\vec{x}) = \prod_{j>k} g(x_j, x_k), \quad \Delta_n(\vec{y}) = \prod_{j<k} g(y_j, y_k).
\]

\(\mathcal{M} \) is a \((a + b) \times (a + b)\) matrix. For \(\vec{y} = \{ \vec{u}^B, \vec{v}^C \} \):

\[
\mathcal{M}_{j,k} = \frac{c}{g(y_k, \vec{u}^C)g(\vec{v}^C, y_k)} \frac{\partial \tau_{\kappa}(y_k | \vec{u}^C, \vec{v}^C)}{\partial u^C_j}, \quad j = 1, \ldots, a,
\]

\[
\mathcal{M}_{a+j,k} = \frac{-c}{g(y_k, \vec{u}^B)g(\vec{v}^B, y_k)} \frac{\partial \tau(y_k | \vec{u}^B, \vec{v}^B)}{\partial v^B_j}, \quad j = 1, \ldots, b.
\]

Similar expression for \(S_{a,b} \) when considering a general twist

\[
t_{\tilde{\kappa}}(x) = \kappa_1 T_{11}(x) + \kappa_2 T_{22}(x) + \kappa_3 T_{33}(x)
\]

but up to terms \((\kappa_i - 1)(\kappa_j - 1), i, j = 1, 2, 3\)
Form factors (off-diagonal case)

\[F_{a,b}^{(i,j)}(z) = C^{a',b'}(\bar{u}^C; \bar{v}^C) T_{ij}(z) B^{a,b}(\bar{u}^B; \bar{v}^B), \]

\[a' = a + \delta_{i1} - \delta_{j1}, \quad b' = b + \delta_{j3} - \delta_{i3}, \quad i,j = 1,2,3. \]

Both \(C^{a',b'}(\bar{u}^C; \bar{v}^C) \) and \(B^{a,b}(\bar{u}^B; \bar{v}^B) \) are on-shell Bethe vectors.

\[F_{a,b}^{(1,2)}(z) = \mathcal{H}_{a',b} \det \mathcal{N}, \]

\[\mathcal{H}_{a',b} = \frac{\Delta_{a'}(\bar{u}^C) \Delta_{b}(\bar{v}^B) \Delta_{a+b+1}(\bar{x})}{h(\bar{v}^C, \bar{u}^B)}, \quad \bar{x} = \{ \bar{u}^B, \bar{v}^C, z \} \]

\[\mathcal{N}_{j,k} = \frac{c}{g(x_k, \bar{u}^C)g(\bar{v}^C, x_k)} \frac{\partial \tau(x_k | \bar{u}^C, \bar{v}^C)}{\partial u^C_j}, \quad j = 1, \ldots, a', \]

\[\mathcal{N}_{a'+j,k} = \frac{-c}{g(x_k, \bar{u}^B)g(\bar{v}^B, x_k)} \frac{\partial \tau(x_k | \bar{u}^B, \bar{v}^B)}{\partial v^B_j}, \quad j = 1, \ldots, b. \]

Similar expression for all \(F_{a,b}^{(i,j)}(z), |i-j| = 1. \)
Spin chains based on (quantum) gl(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General background
Plan of the talk
Notations
Bethe vectors
Correlation functions
Multiple actions of $T_{ij}(\vec{x})$ on BVs
Scalar products of BVs
Form factors (off-diagonal case)
Form factors (diagonal case)
Form factors (remaining)
Summary
Case of trigonometric R-matrices
Conclusion

Form factors (diagonal case)

$$J_{a,b}^{(s,s)}(z) = (-1)^b \mathcal{H}_{a',b} \cdot \det_{a+b+1} \mathcal{N}^{(s)},$$

$$\mathcal{N}_{j,k}^{(s)} = \mathcal{N}_{j,k}, \quad j = 1, \ldots, a + b, \quad k = 1, \ldots, a + b + 1;$$

The last line of $\mathcal{N}^{(s)}$ depends on s, for instance:

$$\mathcal{N}_{a+b+1,k}^{(1)} = h(x_k, \vec{u}^B) h(\vec{v}^C, x_k) \left\{ \frac{u_k^B}{c} \left(\frac{f(\vec{v}^B, u_k^B)}{f(\vec{v}^C, u_k^B)} - 1 \right) - 1 \right\},$$

$$k = 1, \ldots, a;$$

$$\mathcal{N}_{a+b+1,a+k}^{(1)} = h(x_{a+k}, \vec{u}^B) h(\vec{v}^C, x_{a+k}) \left\{ \frac{v_k^C + c}{c} \left(\frac{f(v_k^C, \vec{u}^C)}{f(v_k^C, \vec{u}^B)} - 1 \right) - 1 \right\},$$

$$k = 1, \ldots, b;$$

$$\mathcal{N}_{a+b+1,a+b+1}^{(1)} = \frac{r_1(z) f(\vec{u}^B, z)}{g(\vec{v}^C, z) g(z, \vec{u}^B)}$$

$\mathcal{N}^{(3)}$ has a similar expression;

$$\mathcal{N}_{a+b+1,k}^{(2)} = h(x_k, \vec{u}^B) h(\vec{v}^C, x_k), \quad k = 1, \ldots, a + b + 1.$$
Form factors (remaining)

- $F^{(i,j)}_{a,b}(z), |i - j| = 1$, are computed by brute force, using multiple action of T_{ij}'s

- $F^{(s,s)}_{a,b}(z)$ are computed using the trick of "twisted BVs":

$$F^{(s,s)}_{a,b}(z) = \frac{d}{d\kappa_s} \left[\mathbb{C}^{a,b}_\kappa (\bar{u}^C; \bar{V}^C)(t_\kappa(z) - t(z)) \mathbb{B}^{a,b}(\bar{u}^B; \bar{V}^B) \right]_{\kappa = 1}$$

- $F^{(1,3)}_{a,b}(z)$ and $F^{(3,1)}_{a,b}(z)$ are not computable by these two methods: one needs a new one. We may have found a general one that could help to compute all the form factors in an easy way. More information soon...
Summary

For models with $GL(3)$ invariant R-matrix, we got:

- Explicit expressions for (off-shell) Bethe vectors and their duals
- Multiple action of monodromy elements on these BVs

 Both results in term of Izergin-Korepin determinants and sums of partitions of sets of Bethe parameters

- Calculation of the scalar product of (twisted) on-shell BVs
- Calculation of the form factors of $T_{ij}(x)$, $i, j = 1, 2, 3$

 Both results in term of a single determinant (and product of scalar functions)
Case of trigonometric R-matrices

- Explicit expression of BVs for $U_q(gl_N)$ arXiv:1310.3253
 Use of projectors method in current realization of $U_q(gl_N)$, see works of Khoroshkin, Pakuliak and collaborators

- Multiple actions of $T_{ij}(\vec{w})$ for $U_q(gl_3)$ arXiv:1304.7602

Conclusion: still a lot to do...

- Calculation of the scalar product of generic off-shell BVs (as a single determinant)
 See for instance recent work of Wheeler, arXiv:1306.0552
- Complete calculation of correlation functions, asymptotics, etc...
- Generalization to other models
 - Calculation of the form factors of $T_{jk}(x)$, for $U_q(gl_3)$
 - Case of $U_q(gl_N)$ algebras
Thank you!
Spin chains based on (quantum) \textit{gl}(3) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General background

Plan of the talk

Notations

Bethe vectors

Correlation functions

Multiple actions of $T_{ij} (\vec{x})$ on BVs

Scalar products of BVs

Form factors (off-diagonal case)

Form factors (diagonal case)

Form factors (remaining)

Summary

Case of trigonometric \textit{R}-matrices

Conclusion

\[\mathcal{F}_{a,b}^{(1,3)} (z) \text{ form factor} \]

\[\mathcal{F}_{a,b}^{(1,3)} (z) = C^{a+1,b+1} (\vec{u}^C ; \vec{v}^C) T_{13} (z) \mathbb{B}^{a,b} (\vec{u}^B ; \vec{v}^B) \]

\[= (-1)^{b+1} \mathcal{H}_{a+1,b} \cdot \det \mathcal{N}_{a+b+2}^{(1,3)}, \]

\[\mathcal{N}_{j,k}^{(1,3)} = \mathcal{N}_{j,k}, \quad j, k = 1, \ldots, a + b + 1; \]

\[\mathcal{N}_{a+b+2,k}^{(1,3)} = (-1)^{b+1} r_3 (x_k) \frac{h (x_k, \vec{v}^B)}{g (x_k, \vec{u}^B)} + h (\vec{v}^B, x_k) h (x_k, \vec{u}^B). \]
Explicit formulas

$$B^{a,b}(\vec{u}; \vec{v}) = \sum \frac{K_k(\vec{v}_I | \vec{u}_I)}{\lambda_2(\vec{v}_I) \lambda_2(\vec{u})} \frac{f(\vec{v}_I, \vec{v}_I) f(\vec{u}_I, \vec{u}_I)}{f(\vec{v}_I, \vec{u}_I) f(\vec{v}_I, \vec{u}_I)} T_{12}(\vec{u}_I) T_{13}(\vec{u}_I) T_{23}(\vec{v}_I) |0\rangle$$

$$B^{a,b}(\vec{u}; \vec{v}) = \sum \frac{K_k(\vec{v}_I | \vec{u}_I)}{\lambda_2(\vec{v}_I) \lambda_2(\vec{v})} \frac{f(\vec{v}_I, \vec{v}_I) f(\vec{u}_I, \vec{u}_I)}{f(\vec{v}_I, \vec{u}_I) f(\vec{v}_I, \vec{u}_I)} T_{23}(\vec{v}_I) T_{13}(\vec{v}_I) T_{12}(\vec{u}_I) |0\rangle$$

$$B^{a,b}(\vec{u}; \vec{v}) = \sum \frac{K_k(\vec{v}_I | \vec{u}_I)}{\lambda_2(\vec{v}_I) \lambda_2(\vec{v})} \frac{f(\vec{v}_I, \vec{v}_I) f(\vec{u}_I, \vec{u}_I)}{f(\vec{v}, \vec{u})} T_{13}(\vec{u}_I) T_{12}(\vec{u}_I) T_{23}(\vec{v}_I) |0\rangle$$

$$B^{a,b}(\vec{u}; \vec{v}) = \sum \frac{K_k(\vec{v}_I | \vec{u}_I)}{\lambda_2(\vec{v}_I) \lambda_2(\vec{v})} \frac{f(\vec{v}_I, \vec{v}_I) f(\vec{u}_I, \vec{u}_I)}{f(\vec{v}, \vec{u})} T_{13}(\vec{v}_I) T_{23}(\vec{v}_I) T_{12}(\vec{u}_I) |0\rangle$$

The sums are taken over partitions of the sets
$$\vec{u} \Rightarrow \{\vec{u}_I, \vec{u}_I\} \text{ and } \vec{v} \Rightarrow \{\vec{v}_I, \vec{v}_I\} \text{ with } 0 \leq |\vec{u}_I| = |\vec{v}_I| = k \leq \min(a, b).$$

$$K_k(\vec{v}_I | \vec{u}_I)$$ is the Izergin–Korepin determinant

$$K_k(\vec{x} | \vec{y}) = \prod_{\ell < m}^{k} g(x_\ell, x_m) g(y_m, y_\ell) \cdot h(\vec{x}, \vec{y}) \det_k [t(x_i, y_j)].$$
Spin chains based on (quantum) \(gl(3) \) algebras: Bethe vectors, scalar products and form factors

Eric Ragoucy

General background

Plan of the talk

Notations

Bethe vectors

Correlation functions

Multiple actions of \(T_{ij}(\bar{x}) \) **on BVs**

Scalar products of BVs

Form factors **(off-diagonal case)**

Form factors **(diagonal case)**

Form factors **(remaining)**

Summary

Case of trigonometric \(R \)-matrices

Conclusion

The matrix \(\mathcal{M} \)

Diagonal blocks

\[
\mathcal{M}^{(u)}(u^C_j, u^B_k) = h(\bar{v}^C, u^B_k)h(u^B_k, \bar{u}^C) \left[\kappa t(u^B_k, u^C_j) + t(u^C_j, u^B_k) \frac{f(\bar{v}^B, u^B_k)h(\bar{u}^C, u^B_k)h(u^B_k, \bar{u}^B)}{f(\bar{v}^C, u^B_k)h(u^B_k, \bar{u}^B)} \right]
\]

a \times a block

\[
\mathcal{M}^{(v)}(v^B_j, v^C_k) = h(v^C_k, \bar{u}^B)h(\bar{v}^B, v^C_k) \left[t(v^B_j, v^C_k) + \kappa t(v^C_k, v^B_j) \frac{f(v^C_k, \bar{u}^B)h(v^C_k, \bar{v}^B)h(\bar{v}^B, v^C_k)}{f(v^C_k, \bar{u}^B)h(v^C_k, \bar{v}^B)h(\bar{v}^B, v^C_k)} \right]
\]

b \times b block

Off-diagonal blocks

\[
\mathcal{M}^{(u)}(u^C_j, v^C_k) = \kappa t(v^C_k, u^C_j)h(\bar{v}^C, \bar{u}^C)h(v^C_k, \bar{u}^C) \quad a \times b \text{ block}
\]

\[
\mathcal{M}^{(v)}(v^B_j, u^B_k) = t(v^B_j, u^B_k)h(\bar{v}^B, u^B_k)h(u^B_k, \bar{u}^B) \quad b \times a \text{ block}
\]