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The six-vertex model with DWBC

The six-vertex model:

w1 w2 w3 w4 w5 w6

Domain wall boundary conditions (Korepin, 1982):
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N

︸
︷︷

︸

N

The partition function:

ZN =
∑

C

6∏

i=1

w
ni(C)
i ,

6∑

i=1

ni(C) = N2,

where ni(C) is the number of vertices of type i in the configuration C.
The partition function is given as an N ×N determinant (Izergin, 1987).



The six-vertex model with DWBC

Some further results (mainly related to statistical mechanics) are:

I Thermodynamics—the free energy (Korepin, Zinn-Justin, 2000);

I Asymptotic expansion of the partition function in the
thermodynamic limit (Bogoliubov, Kitaev, Zvonarev, 2002, Bleher,
Fokin, Liechty, Bothner, 2006-2012);

I Boundary correlation functions (Bogoliubov, Pronko, Zvonarev,
2001, Foda, Preston, 2004, Colomo, Pronko, 2005-2006);

I Simulations of configurations—numerical evidence of the phase
separation phenomena (Syljuasen, Zvonarev, 2004, Allison,
Reshetikhin, 2005);

I Emptiness formation probability (CP, 2008);

I A formula for the arctic curve—the curve of spacial separation of
order and disorder (CP, 2010).

There are also numerous results related to combinatorics (Kuperberg,
Zeilberger, Razumov, Stroganov, Zinn-Justin, Di Francesco, ..., 1996-...).



The Emptiness Formation Probability

Fr,s,q — Emptiness Formation Probability of the six-vertex model with
DWBC. Non-local correlation function which describes the probability of
obtaining the configuration
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r+q

︸ ︷︷ ︸
s+q

︸ ︷︷ ︸
r

︸︷
︷︸ s

The EFP have been represented as an s-fold multiple integral [CP, Nucl.
Phys. B 798 (2008), 340]. By making use some results from the random
matrix theory it is possible to extract (in fact, to conjecture) an equation
for the arctic curve [CP, J. Stat. Phys. 138 (2010), 662]. An open
problem remains: Construct an asymptotic expansion of the EFP in the
thermodynamic limit!



An L-shaped domain

Consider the six-vertex model on the lattice
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We call it the L-shaped domain. The partition function is related to the
EFP:

Zr,s,q =
ZN

w
s(s+q)
2

Fr,s,q, N = r + s+ q.

Thus, the thermodynamics of the 6VM on the L-shaped domain as r, s,
and q vary is totally controlled by the asymptotic properties of the EFP
in the thermodynamic limit!



Thermodynamic limit

We are interested in the limit:

r, s, q →∞, with the ratios r : s : q fixed.

In this limit, the N ×N lattice is scaled onto an the unit square
[0, 1]× [0, 1], with the scaled variables

x =
s

N
, y =

s+ q

N
, x, y ∈ [0, 1].

In the thermodynamic limit the partition function of the six-vertex model
on the L-shaped domain is

logZr,s,q = −N2(1− xy)f(x, y) + o(N2)

where f(x, y) is the free energy per site. We expect that the EFP
behaves as:

logFr,s,q = −N2σ(x, y) + o(N2),

and so the functions σ(x, y) and f(x, y) are related by

(1− xy)f(x, y) = f(0, 0) + xy logw2 + σ(x, y).



The free-fermion point

We choose the weights as

w1 = w2 =
√

1− α, w3 = w4 =
√
α, w5 = w6 = 1, α ∈ [0, 1].

The multiple integral representation for the EFP in this case is

Fr,s,q =
(−1)s(s+1)/2

s!

∮

C0

· · ·
∮

C0

∏

j<k

(zj−zk)2
s∏

j=1

(αzj + 1− α)r+q

zrj (zj − 1)s
dzs

(2πi)s
.

It admits various equivalents representations (Hankel determinants,
Fredholm determinants, Toda chain solutions) [AP, J. Math. Sci. 192
(2013), 101]. In particular,

Fr,s,q =
(q!)s∏s−1

k=0(q + k)!k!

(1− α)s(s+q)

αs(s−1)/2
det

1≤j,k≤s

[
r−1∑

m=0

mj+k−2
(
m+ q

m

)
αm

]
.

This formula is valid for q ≥ 0 and allows one to find σ(x, y) for x ≥ y.

In a different form and in different notations it appeared previously in the
random grows models context [Johansson, 2000].



The Arctic Ellipse and domains DI, DII
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Dotted line: the Arctic Ellipse—the phase separation curve of the
six-vertex model with DWBC (the free-fermion weights),

(1− x− y)2

α
+

(x− y)2

1− α = 1.



The main result

We obtain
σ(x, y) = 0, (x, y) ∈ DI,

and

σ(x, y) = xy log
h

η
− (1− x− y)2

2
log

1− h
1− η −

1

2
log

1 + h

1 + η

+ (1− x)y log
y + (1− x)h

y + (1− x)η
+ x(1− y) log

x+ (1− y)h

x+ (1− y)η

− (1− x)x log
x+ (1− x)h

x+ (1− x)η
− (1− y)y log

y + (1− y)h

y + (1− y)η

− (x− y)2

2
log

x+ y + (2− x− y)h

x+ y + (2− x− y)η
, (x, y) ∈ DII,

where

h = h(x, y) :=

√
xy

(1− x)(1− y)

and η = η(x, y;α) is such that

η ∈ [0, 1], α
(1 + η)2

(
x+ (1− x)η

)(
y + (1− y)η

)

(1− η)2
(
y + (1− x)η

)(
x+ (1− y)η

) = 1.



Third-order phase transition

Near the Arctic Ellipse the function σ(x, y) vanishes as ε3, where ε is the
distance to the Arctic Ellipse (from the interior of the ellipse).

This can seen differently, as a phase transition in the parameter α:

σ(x, y) =

{
0 α ≤ αc

C(α− αc)
3 +O

(
(α− αc)

4
)

α ≥ αc

where C = C(x, y, α) > 0 and the critical value αc = αc(x, y) is the
value of α such that the given point (x, y) is a point of the top left
portion of the Arctic Ellipse,

αc =
(√

(1− x)(1− y)−√xy
)2
.



EFP as a matrix model

To obtain σ(x, y) above, we start with the Hankel determinant formula
and write the EFP as

Fr,s,q =
(1− α)s(s+q)

αs(s+1)/2
Ir,s,q

where Ir,s,q is a random matrix model integral (with the discrete
measure):

Ir,s,q =
1

s!

s−1∏

j=0

q!

j!(j + q)!

r−1∑

m1=0

· · ·
r−1∑

ms=0

∏

j<k

(mj−mk)2
s∏

j=1

(
q +mj

q

)
αmj .

In the thermodynamic limit s, r, and q are large, and we have

Ir,s,q = exp
{
s2Φ + o(s2)

}
, s→∞,

where Φ = Φ(R,Q, α) and the parameters R ∈ [1,∞) and Q ∈ [0,∞)
are

R :=
r

s
=

1− x
y

, Q :=
q

s
=
x− y
y

.



EFP as a matrix model

The standard approach of random matrix theory: the sums are
approximated by integrals, by introducing the rescaled variables µj :

mj = sµj , j = 1, . . . , s.

So, as s→∞,

Ir,s,q ∝
∫ R

0

· · ·
∫ R

0

∏

1≤j<k≤s

(µk − µk)2 exp

{
− s

s∑

j=1

V (µj)

}
dMs(µ).

The potential V (µ) is

V (µ) := − lim
s→∞

1

s
log

((
q + sµ

q

)
αsµ
)
, q = Qs.

The integration measure dMs(µ) is

dMs(µ) =
∏

1≤j<k≤s

H
(
|µj − µk| − s−1

)
dsµ.

The product of the Heaviside-functions
∏
j<kH

(
|µj − µk| − s−1

)
takes

into account the discreteness of the original variables.



The resolvent

In the limit s→∞ the solution of the saddle-point problem is described
by the resolvent

W (z) =

∫

S

ρ(µ)

z − µ dµ, z /∈ S,

where ρ(µ) is the density, and S is the support of the density, S ⊆ [0, R].
Given a resolvent W (x),

ρ(µ) = − 1

2πi
[W (µ+ i0)−W (µ− i0)] , µ ∈ S.

The density, by definition, is subject to the normalization condition
∫

S

ρ(µ) dµ = 1,

In the case of discrete variables it must satisfy the additional condition
[Douglas, Kazakov, 1993, Brezin, Kazakov, 2000]:

ρ(µ) ≤ 1, µ ∈ S.

Solutions tend to accumulate near the bottom of the well of the
potential, and saturated regions in S, where ρ(µ) = 1, may arise.



The one-band ansatz

The potential of our RMM is

V (µ) = −µ logα+µ logµ−(µ+Q) log(µ+Q)+Q logQ, µ ∈ [0, R].

0 R µ

V (µ)

The function V (µ) has the following properties:
I It has a single minimum, at the point µ = αQ/(1− α);
I As µ→∞, it is linear, with a positive slope, V (µ) ∼ (− logα)µ;
I The allowed values of µ are in the interval [0, R]

This implies that ρ(µ) takes intermediate values on a subinterval [a, b],
where a and b to be determined, while on the subintervals [0, a] and
[b, R] it is equal to 0 or 1. This is the so-called one-band ansatz [Baik,
Kriecherbauer, McLaughlin, Miller, Discrete Orthogonal Polynomials:
Asymptotics and Applications, 2007].



The resolvent

The resolvent is given by

W (z) = H(z) +

∫

Sρ=1

1

z − µ dµ, H(z) =

∫

Sρ<1

ρ(µ)

z − µ dµ.

The function H(z) satisfies

H(µ+ i0) +H(µ− i0) = U(µ), µ ∈ Sρ<1,

where

U(z) = −2

∫

Sρ=1

1

z − µ dµ+ V ′(z).

In the case of the one-band ansatz Sρ<1 = [a, b] and the function H(z) is

H(z) =

√
(z − a)(z − b)

2π

∫ b

a

U(µ)

(z − µ)
√

(µ− a)(b− µ)
dµ.

The end-points a and b can be found by solving the equations arising
from the condition that W (z) ∼ 1/z as s→∞.



The free energy

Define the first moment of the density:

E =

∫

S

µρ(µ) dµ.

It can be found from the resolvent W (z), by noting that

W (z) =
1

z
+
E

z2
+O(z−3), |z| → ∞.

The quantity Φ (the “free energy” of the matrix model) satisfies

∂

∂ logα
Φ = E.

and hence

Φ =

∫
E

dα

α
+ C.

where C = C(R,Q) is some function independent of α. It is fixed by
noting that the Hankel determinant for the EFP admits exact evaluation
for α = 0 and as α→ 1.



Two regimes

We obtain that the first moment of the density E (hence, Φ) has two
different expressions depending on either R > Rc or R < Rc, where

Rc =

(
1 +

√
α(1 +Q)

)2

1− α , Q ∈ [0,∞).

The first case corresponds to zero density in the interval [b, R]; the points
(x, y) = (x(R,Q), y(R,Q)) take their values in the region DI.

The second case corresponds to ρ(µ) = 1 in the interval [b, R]; the points
(x, y) = (x(R,Q), y(R,Q)) take their values in the region DII.

The value of Rc corresponds to b = R.



Some numerical results, α = 1/2 [Colomo, Sportiello, 2014]
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Some numerical results, α = 1/2 [Colomo, Sportiello, 2014]



Some numerical results, α = 1/2 [Colomo, Sportiello, 2014]



Open problems

I Construct asymptotic expansion for the partition function Zr,s,q of
the 6VM on the L-shaped domain in the thermodynamic limit,
extending the results of Bleher, Fokin, Liechty, Bothner for the
partition function ZN of the 6VM with DWBC.

I Derive the arctic curve of the 6VM on the L-shaped domain.

I Try to extend any of the results about the EFP out the free-fermion
point.


