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The six-vertex model with DWBC
The six-vertex model:

Domain wall boundary conditions (Korepin, 1982):

The partition function:
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where n;(C) is the number of vertices of type 7 in the configuration C.
The partition function is given as an N x N determinant (lzergin, 1987).



The six-vertex model with DWBC

Some further results (mainly related to statistical mechanics) are:
» Thermodynamics—the free energy (Korepin, Zinn-Justin, 2000);

» Asymptotic expansion of the partition function in the
thermodynamic limit (Bogoliubov, Kitaev, Zvonarev, 2002, Bleher,
Fokin, Liechty, Bothner, 2006-2012);

» Boundary correlation functions (Bogoliubov, Pronko, Zvonarev,
2001, Foda, Preston, 2004, Colomo, Pronko, 2005-2006);

» Simulations of configurations—numerical evidence of the phase
separation phenomena (Syljuasen, Zvonarev, 2004, Allison,
Reshetikhin, 2005);

» Emptiness formation probability (CP, 2008);

» A formula for the arctic curve—the curve of spacial separation of
order and disorder (CP, 2010).

There are also numerous results related to combinatorics (Kuperberg,
Zeilberger, Razumov, Stroganov, Zinn-Justin, Di Francesco, ..., 1996-...).



The Emptiness Formation Probability

F. s, — Emptiness Formation Probability of the six-vertex model with
DWBC. Non-local correlation function which describes the probability of
obtaining the configuration
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The EFP have been represented as an s-fold multiple integral [CP, Nucl.
Phys. B 798 (2008), 340]. By making use some results from the random
matrix theory it is possible to extract (in fact, to conjecture) an equation
for the arctic curve [CP, J. Stat. Phys. 138 (2010), 662]. An open
problem remains: Construct an asymptotic expansion of the EFP in the
thermodynamic limit!



An L-shaped domain

Consider the six-vertex model on the lattice
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We call it the L-shaped domain. The partition function is related to the
EFP:
N

Zrsa = e

Frsqs N=r+s+gq.
Thus, the thermodynamics of the 6VM on the L-shaped domain as r, s,

and g vary is totally controlled by the asymptotic properties of the EFP
in the thermodynamic limit!



Thermodynamic limit
We are interested in the limit:

r,8,q — 00, with the ratios r:s:q fixed.

In this limit, the V x N lattice is scaled onto an the unit square
[0,1] x [0, 1], with the scaled variables

S _s5+4q
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Tr =

z,y €[0,1].

In the thermodynamic limit the partition function of the six-vertex model
on the L-shaped domain is

10g Zy. 5.4 = —=N?(1 = 2y) f (x,y) + o(N?)

where f(x,y) is the free energy per site. We expect that the EFP

behaves as:
lOg Fr,s,q = —N2O'(£C7 y) + O(N2)7

and so the functions o(z,y) and f(z,y) are related by

(1 —=zy)f(z,y) = f(0,0) + zylogws + o(x,y).



The free-fermion point

We choose the weights as
w; =ws =vV1-—a, wy = ws = Vo, ws = wg = 1, a € [0,1].

The multiple integral representation for the EFP in this case is
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It admits various equivalents representations (Hankel determinants,
Fredholm determinants, Toda chain solutions) [AP, J. Math. Sci. 192
(2013), 101]. In particular,

1) 1 — a)s(s+a) r—1
Frisa = S—l(q : ( s((:zl)/2 det [Z mIth—2 (m + q) a™| .
kzo(q + k’)'k' 6] 1<j,k<s — m

This formula is valid for ¢ > 0 and allows one to find o(x,y) for z > y.

In a different form and in different notations it appeared previously in the
random grows models context [Johansson, 2000].



The Arctic Ellipse and domains Dy, Dry
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Dotted line: the Arctic Ellipse—the phase separation curve of the
six-vertex model with DWBC (the free-fermion weights),
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The main result
We obtain
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Third-order phase transition

Near the Arctic Ellipse the function o(x,%) vanishes as €3, where ¢ is the
distance to the Arctic Ellipse (from the interior of the ellipse).

This can seen differently, as a phase transition in the parameter a:

B 0 a < o
o(x,y) = Cla— Oéc)3 +0 ((a _ ac)4) o> o

where C' = C(z,y, ) > 0 and the critical value a. = a(z,y) is the
value of « such that the given point (z,y) is a point of the top left
portion of the Arctic Ellipse,

oc = (V=0T =9) - vaz)



EFP as a matrix model

To obtain o(z,y) above, we start with the Hankel determinant formula
and write the EFP as

(1 — a)s(s+a)

Frsq= Qs(st1)/2 TTsa

where I, , is a random matrix model integral (with the discrete
measure):

Irsa = H ]+q| Z Z [T m; k>2£[1 <q+qmj)am

m1=0 ms=0j<k

In the thermodynamlc limit s, r, and ¢ are large, and we have
Isq=exp{s°®+ 0(52)} , 5 — 00,

where ® = ®(R, Q, «) and the parameters R € [1,00) and @ € [0, 00)
are
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EFP as a matrix model
The standard approach of random matrix theory: the sums are
approximated by integrals, by introducing the rescaled variables ;:

mj = S[ij, 7=1,...,s.
So, as s — o0,
R R s
Ly sq / / IT (ke —m)?expq =D V() p dM(p).
0 0 1<j<k<s j=1

The potential V(u) is

1
V(p) := — lim —log ((q + s,u> asﬂ) , q=Qs.
q

s§—0o0 8§

The integration measure dM;(u) is

Mo ()= [ H (s —mel—s")dp.
1<j<k<s

The product of the Heaviside-functions [, _, H (|u; — px| —s7') takes
into account the discreteness of the original variables.



The resolvent

In the limit s — oo the solution of the saddle-point problem is described
by the resolvent

W(z)z/szp(_ﬂldu, 2 ¢85,

where p(u) is the density, and S is the support of the density, S C [0, R].
Given a resolvent W(x),

o) =~ (W +10) = W(a—10)],  pes.

The density, by definition, is subject to the normalization condition
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In the case of discrete variables it must satisfy the additional condition
[Douglas, Kazakov, 1993, Brezin, Kazakov, 2000]:

p(p) <1, peS.

Solutions tend to accumulate near the bottom of the well of the
potential, and saturated regions in S, where p(u) = 1, may arise.



The one-band ansatz
The potential of our RMM is

V(n) = —ploga+plog p—(p+Q)log(p+Q)+QlogQ, €0, R]
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The function V(u) has the following properties:
> It has a single minimum, at the point = aQ/(1 — a);
» As u — o0, it is linear, with a positive slope, V(i) ~ (—loga)u;
» The allowed values of y are in the interval [0, R]
This implies that p(u) takes intermediate values on a subinterval [a, b],
where a and b to be determined, while on the subintervals [0, a] and
[b, R] it is equal to 0 or 1. This is the so-called one-band ansatz [Baik,

Kriecherbauer, McLaughlin, Miller, Discrete Orthogonal Polynomials:
Asymptotics and Applications, 2007].



The resolvent

The resolvent is given by

W(z):H(z)+/S L, H(z):/s p(_“) dp.

p=1 S
The function H(z) satisfies
H(p+10) + H(p —10) =U(n),  p € Sp<a,

where

U(z) :_2/5 v,
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In the case of the one-band ansatz S,<1 = [, b] and the function H(z) is
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The end-points a and b can be found by solving the equations arising
from the condition that W (z) ~ 1/z as s — oo.




The free energy

Define the first moment of the density:

E= /S pp(p) dp.

It can be found from the resolvent W(z), by noting that

1 E
W(z) = - + = + 0(2_3), |z| = oo.

The quantity ® (the “free energy” of the matrix model) satisfies

0
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and hence d
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where C = C(R, Q) is some function independent of «. It is fixed by
noting that the Hankel determinant for the EFP admits exact evaluation
fora=0and as a — 1.



Two regimes

We obtain that the first moment of the density E (hence, ®) has two
different expressions depending on either R > R or R < R, where

o 1+ /a(d+Q))’
Cc — 1_a 9

Q € 1]0,00).

The first case corresponds to zero density in the interval [b, R]; the points
(z,y) = (2(R,Q),y(R,Q)) take their values in the region Dj.

The second case corresponds to p(p) = 1 in the interval [b, R]; the points
(z,y) = (z(R, Q),y(R,Q)) take their values in the region Dyy.

The value of R, corresponds to b = R.



Some numerical results, & = 1/2 [Colomo, Sportiello, 2014]
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Some numerical results, & = 1/2 [Colomo, Sportiello, 2014]
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Some numerical results, & = 1/2 [Colomo, Sportiello, 2014]
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Some numerical results, & = 1/2 [Colomo, Sportiello, 2014]
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Some numerical results, & = 1/2 [Colomo, Sportiello, 2014]
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Some numerical results, & = 1/2 [Colomo, Sportiello, 2014]
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Some numerical results, & = 1/2 [Colomo, Sportiello, 2014]
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Some numerical results, & = 1/2 [Colomo, Sportiello, 2014]
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Open problems

» Construct asymptotic expansion for the partition function Z, 5 , of
the 6VM on the L-shaped domain in the thermodynamic limit,
extending the results of Bleher, Fokin, Liechty, Bothner for the
partition function Zy of the 6VM with DWBC.

» Derive the arctic curve of the 6VM on the L-shaped domain.

» Try to extend any of the results about the EFP out the free-fermion
point.



