Thermodynamics of the six-vertex model on an L-shaped domain

Filippo Colomo ${ }^{1}$ and Andrei G. Pronko ${ }^{2}$
${ }^{1}$ I.N.F.N., Sezione di Firenze, Firenze, Italy
${ }^{2}$ Steklov Mathematical Institute, St. Petersburg, Russia

$$
\begin{gathered}
\text { June } 28 \text { - July 2, } 2014 \\
\text { Bad Honnef }
\end{gathered}
$$

The six-vertex model with DWBC

The six-vertex model:

Domain wall boundary conditions (Korepin, 1982):

The partition function:

$$
Z_{N}=\sum_{\mathcal{C}} \prod_{i=1}^{6} w_{i}^{n_{i}(\mathcal{C})}, \quad \sum_{i=1}^{6} n_{i}(\mathcal{C})=N^{2}
$$

where $n_{i}(\mathcal{C})$ is the number of vertices of type i in the configuration \mathcal{C}. The partition function is given as an $N \times N$ determinant (Izergin, 1987).

The six-vertex model with DWBC

Some further results (mainly related to statistical mechanics) are:

- Thermodynamics-the free energy (Korepin, Zinn-Justin, 2000);
- Asymptotic expansion of the partition function in the thermodynamic limit (Bogoliubov, Kitaev, Zvonarev, 2002, Bleher, Fokin, Liechty, Bothner, 2006-2012);
- Boundary correlation functions (Bogoliubov, Pronko, Zvonarev, 2001, Foda, Preston, 2004, Colomo, Pronko, 2005-2006);
- Simulations of configurations-numerical evidence of the phase separation phenomena (Syljuasen, Zvonarev, 2004, Allison, Reshetikhin, 2005);
- Emptiness formation probability (CP, 2008);
- A formula for the arctic curve-the curve of spacial separation of order and disorder (CP, 2010).
There are also numerous results related to combinatorics (Kuperberg, Zeilberger, Razumov, Stroganov, Zinn-Justin, Di Francesco, ..., 1996-...).

The Emptiness Formation Probability

$F_{r, s, q}$ - Emptiness Formation Probability of the six-vertex model with DWBC. Non-local correlation function which describes the probability of obtaining the configuration

The EFP have been represented as an s-fold multiple integral [CP, Nucl. Phys. B 798 (2008), 340]. By making use some results from the random matrix theory it is possible to extract (in fact, to conjecture) an equation for the arctic curve [CP, J. Stat. Phys. 138 (2010), 662]. An open problem remains: Construct an asymptotic expansion of the EFP in the thermodynamic limit!

An L-shaped domain

Consider the six-vertex model on the lattice

We call it the L-shaped domain. The partition function is related to the EFP:

$$
Z_{r, s, q}=\frac{Z_{N}}{w_{2}^{s(s+q)}} F_{r, s, q}, \quad N=r+s+q .
$$

Thus, the thermodynamics of the 6 VM on the L -shaped domain as r, s, and q vary is totally controlled by the asymptotic properties of the EFP in the thermodynamic limit!

Thermodynamic limit

We are interested in the limit:

$$
r, s, q \rightarrow \infty, \quad \text { with the ratios } \quad r: s: q \quad \text { fixed. }
$$

In this limit, the $N \times N$ lattice is scaled onto an the unit square $[0,1] \times[0,1]$, with the scaled variables

$$
x=\frac{s}{N}, \quad y=\frac{s+q}{N}, \quad x, y \in[0,1] .
$$

In the thermodynamic limit the partition function of the six-vertex model on the L-shaped domain is

$$
\log Z_{r, s, q}=-N^{2}(1-x y) f(x, y)+o\left(N^{2}\right)
$$

where $f(x, y)$ is the free energy per site. We expect that the EFP behaves as:

$$
\log F_{r, s, q}=-N^{2} \sigma(x, y)+o\left(N^{2}\right)
$$

and so the functions $\sigma(x, y)$ and $f(x, y)$ are related by

$$
(1-x y) f(x, y)=f(0,0)+x y \log w_{2}+\sigma(x, y)
$$

The free-fermion point

We choose the weights as

$$
w_{1}=w_{2}=\sqrt{1-\alpha}, \quad w_{3}=w_{4}=\sqrt{\alpha}, \quad w_{5}=w_{6}=1, \quad \alpha \in[0,1] .
$$

The multiple integral representation for the EFP in this case is

$$
F_{r, s, q}=\frac{(-1)^{s(s+1) / 2}}{s!} \oint_{C_{0}} \cdots \oint_{C_{0}} \prod_{j<k}\left(z_{j}-z_{k}\right)^{2} \prod_{j=1}^{s} \frac{\left(\alpha z_{j}+1-\alpha\right)^{r+q}}{z_{j}^{r}\left(z_{j}-1\right)^{s}} \frac{\mathrm{~d} z^{s}}{(2 \pi \mathrm{i})^{s}} .
$$

It admits various equivalents representations (Hankel determinants, Fredholm determinants, Toda chain solutions) [AP, J. Math. Sci. 192 (2013), 101]. In particular,
$F_{r, s, q}=\frac{(q!)^{s}}{\prod_{k=0}^{s-1}(q+k)!k!} \frac{(1-\alpha)^{s(s+q)}}{\alpha^{s(s-1) / 2}} \operatorname{det}_{1 \leq j, k \leq s}\left[\sum_{m=0}^{r-1} m^{j+k-2}\binom{m+q}{m} \alpha^{m}\right]$.
This formula is valid for $q \geq 0$ and allows one to find $\sigma(x, y)$ for $x \geq y$.
In a different form and in different notations it appeared previously in the random grows models context [Johansson, 2000].

The Arctic Ellipse and domains $\mathcal{D}_{\mathrm{I}}, \mathcal{D}_{\text {II }}$

Dotted line: the Arctic Ellipse-the phase separation curve of the six-vertex model with DWBC (the free-fermion weights),

$$
\frac{(1-x-y)^{2}}{\alpha}+\frac{(x-y)^{2}}{1-\alpha}=1
$$

The main result

We obtain

$$
\sigma(x, y)=0, \quad(x, y) \in \mathcal{D}_{\mathrm{I}}
$$

and

$$
\begin{aligned}
\sigma(x, y)= & x y \log \frac{h}{\eta}-\frac{(1-x-y)^{2}}{2} \log \frac{1-h}{1-\eta}-\frac{1}{2} \log \frac{1+h}{1+\eta} \\
& +(1-x) y \log \frac{y+(1-x) h}{y+(1-x) \eta}+x(1-y) \log \frac{x+(1-y) h}{x+(1-y) \eta} \\
& -(1-x) x \log \frac{x+(1-x) h}{x+(1-x) \eta}-(1-y) y \log \frac{y+(1-y) h}{y+(1-y) \eta} \\
& -\frac{(x-y)^{2}}{2} \log \frac{x+y+(2-x-y) h}{x+y+(2-x-y) \eta}, \quad(x, y) \in \mathcal{D}_{\mathrm{II}},
\end{aligned}
$$

where

$$
h=h(x, y):=\sqrt{\frac{x y}{(1-x)(1-y)}}
$$

and $\eta=\eta(x, y ; \alpha)$ is such that

$$
\eta \in[0,1], \quad \alpha \frac{(1+\eta)^{2}(x+(1-x) \eta)(y+(1-y) \eta)}{(1-\eta)^{2}(y+(1-x) \eta)(x+(1-y) \eta)}=1 .
$$

Third-order phase transition

Near the Arctic Ellipse the function $\sigma(x, y)$ vanishes as ϵ^{3}, where ϵ is the distance to the Arctic Ellipse (from the interior of the ellipse).

This can seen differently, as a phase transition in the parameter α :

$$
\sigma(x, y)= \begin{cases}0 & \alpha \leq \alpha_{\mathrm{c}} \\ C\left(\alpha-\alpha_{\mathrm{c}}\right)^{3}+O\left(\left(\alpha-\alpha_{\mathrm{c}}\right)^{4}\right) & \alpha \geq \alpha_{\mathrm{c}}\end{cases}
$$

where $C=C(x, y, \alpha)>0$ and the critical value $\alpha_{\mathrm{c}}=\alpha_{\mathrm{c}}(x, y)$ is the value of α such that the given point (x, y) is a point of the top left portion of the Arctic Ellipse,

$$
\alpha_{\mathrm{c}}=(\sqrt{(1-x)(1-y)}-\sqrt{x y})^{2} .
$$

EFP as a matrix model

To obtain $\sigma(x, y)$ above, we start with the Hankel determinant formula and write the EFP as

$$
F_{r, s, q}=\frac{(1-\alpha)^{s(s+q)}}{\alpha^{s(s+1) / 2}} I_{r, s, q}
$$

where $I_{r, s, q}$ is a random matrix model integral (with the discrete measure):
$I_{r, s, q}=\frac{1}{s!} \prod_{j=0}^{s-1} \frac{q!}{j!(j+q)!} \sum_{m_{1}=0}^{r-1} \cdots \sum_{m_{s}=0}^{r-1} \prod_{j<k}\left(m_{j}-m_{k}\right)^{2} \prod_{j=1}^{s}\binom{q+m_{j}}{q} \alpha^{m_{j}}$.
In the thermodynamic limit s, r, and q are large, and we have

$$
I_{r, s, q}=\exp \left\{s^{2} \Phi+o\left(s^{2}\right)\right\}, \quad s \rightarrow \infty
$$

where $\Phi=\Phi(R, Q, \alpha)$ and the parameters $R \in[1, \infty)$ and $Q \in[0, \infty)$ are

$$
R:=\frac{r}{s}=\frac{1-x}{y}, \quad Q:=\frac{q}{s}=\frac{x-y}{y} .
$$

EFP as a matrix model

The standard approach of random matrix theory: the sums are approximated by integrals, by introducing the rescaled variables μ_{j} :

$$
m_{j}=s \mu_{j}, \quad j=1, \ldots, s
$$

So, as $s \rightarrow \infty$,

$$
I_{r, s, q} \propto \int_{0}^{R} \cdots \int_{0}^{R} \prod_{1 \leq j<k \leq s}\left(\mu_{k}-\mu_{k}\right)^{2} \exp \left\{-s \sum_{j=1}^{s} V\left(\mu_{j}\right)\right\} \mathrm{d} M_{s}(\mu)
$$

The potential $V(\mu)$ is

$$
V(\mu):=-\lim _{s \rightarrow \infty} \frac{1}{s} \log \left(\binom{q+s \mu}{q} \alpha^{s \mu}\right), \quad q=Q s .
$$

The integration measure $\mathrm{d} M_{s}(\mu)$ is

$$
\mathrm{d} M_{s}(\mu)=\prod_{1 \leq j<k \leq s} H\left(\left|\mu_{j}-\mu_{k}\right|-s^{-1}\right) \mathrm{d}^{s} \mu .
$$

The product of the Heaviside-functions $\prod_{j<k} H\left(\left|\mu_{j}-\mu_{k}\right|-s^{-1}\right)$ takes into account the discreteness of the original variables.

The resolvent

In the limit $s \rightarrow \infty$ the solution of the saddle-point problem is described by the resolvent

$$
W(z)=\int_{S} \frac{\rho(\mu)}{z-\mu} \mathrm{d} \mu, \quad z \notin S
$$

where $\rho(\mu)$ is the density, and S is the support of the density, $S \subseteq[0, R]$. Given a resolvent $W(x)$,

$$
\rho(\mu)=-\frac{1}{2 \pi \mathrm{i}}[W(\mu+\mathrm{i} 0)-W(\mu-\mathrm{i} 0)], \quad \mu \in S
$$

The density, by definition, is subject to the normalization condition

$$
\int_{S} \rho(\mu) \mathrm{d} \mu=1,
$$

In the case of discrete variables it must satisfy the additional condition [Douglas, Kazakov, 1993, Brezin, Kazakov, 2000]:

$$
\rho(\mu) \leq 1, \quad \mu \in S
$$

Solutions tend to accumulate near the bottom of the well of the potential, and saturated regions in S, where $\rho(\mu)=1$, may arise.

The one-band ansatz

The potential of our RMM is

$$
V(\mu)=-\mu \log \alpha+\mu \log \mu-(\mu+Q) \log (\mu+Q)+Q \log Q, \quad \mu \in[0, R] .
$$

The function $V(\mu)$ has the following properties:

- It has a single minimum, at the point $\mu=\alpha Q /(1-\alpha)$;
- As $\mu \rightarrow \infty$, it is linear, with a positive slope, $V(\mu) \sim(-\log \alpha) \mu$;
- The allowed values of μ are in the interval $[0, R]$

This implies that $\rho(\mu)$ takes intermediate values on a subinterval $[a, b]$, where a and b to be determined, while on the subintervals $[0, a]$ and $[b, R]$ it is equal to 0 or 1 . This is the so-called one-band ansatz [Baik, Kriecherbauer, McLaughlin, Miller, Discrete Orthogonal Polynomials: Asymptotics and Applications, 2007].

The resolvent

The resolvent is given by

$$
W(z)=H(z)+\int_{S_{\rho=1}} \frac{1}{z-\mu} \mathrm{d} \mu, \quad H(z)=\int_{S_{\rho<1}} \frac{\rho(\mu)}{z-\mu} \mathrm{d} \mu .
$$

The function $H(z)$ satisfies

$$
H(\mu+\mathrm{i} 0)+H(\mu-\mathrm{i} 0)=U(\mu), \quad \mu \in S_{\rho<1},
$$

where

$$
U(z)=-2 \int_{S_{\rho=1}} \frac{1}{z-\mu} \mathrm{d} \mu+V^{\prime}(z)
$$

In the case of the one-band ansatz $S_{\rho<1}=[a, b]$ and the function $H(z)$ is

$$
H(z)=\frac{\sqrt{(z-a)(z-b)}}{2 \pi} \int_{a}^{b} \frac{U(\mu)}{(z-\mu) \sqrt{(\mu-a)(b-\mu)}} \mathrm{d} \mu .
$$

The end-points a and b can be found by solving the equations arising from the condition that $W(z) \sim 1 / z$ as $s \rightarrow \infty$.

The free energy

Define the first moment of the density:

$$
E=\int_{S} \mu \rho(\mu) \mathrm{d} \mu .
$$

It can be found from the resolvent $W(z)$, by noting that

$$
W(z)=\frac{1}{z}+\frac{E}{z^{2}}+O\left(z^{-3}\right), \quad|z| \rightarrow \infty
$$

The quantity Φ (the "free energy" of the matrix model) satisfies

$$
\frac{\partial}{\partial \log \alpha} \Phi=E .
$$

and hence

$$
\Phi=\int E \frac{\mathrm{~d} \alpha}{\alpha}+C .
$$

where $C=C(R, Q)$ is some function independent of α. It is fixed by noting that the Hankel determinant for the EFP admits exact evaluation for $\alpha=0$ and as $\alpha \rightarrow 1$.

Two regimes

We obtain that the first moment of the density E (hence, Φ) has two different expressions depending on either $R>R_{\mathrm{c}}$ or $R<R_{\mathrm{c}}$, where

$$
R_{\mathrm{c}}=\frac{(1+\sqrt{\alpha(1+Q)})^{2}}{1-\alpha}, \quad Q \in[0, \infty)
$$

The first case corresponds to zero density in the interval $[b, R]$; the points $(x, y)=(x(R, Q), y(R, Q))$ take their values in the region \mathcal{D}_{I}.

The second case corresponds to $\rho(\mu)=1$ in the interval $[b, R]$; the points $(x, y)=(x(R, Q), y(R, Q))$ take their values in the region $\mathcal{D}_{\mathrm{II}}$.

The value of R_{c} corresponds to $b=R$.

Some numerical results, $\alpha=1 / 2$ [Colomo, Sportiello, 2014]

L-shaped 6VM $\Delta=0$
$N=500$
$s=50$
$q=0$
$r=N-s$

Some numerical results, $\alpha=1 / 2$ [Colomo, Sportiello, 2014]

L-shaped 6VM $\Delta=0$
$N=500$
$s=75$
$q=0$
$r=N-s$

Some numerical results, $\alpha=1 / 2$ [Colomo, Sportiello, 2014]

L-shaped 6VM $\Delta=0$
$N=500$
$s=100$
$q=0$
$r=N-s$

Some numerical results, $\alpha=1 / 2$ [Colomo, Sportiello, 2014]

L-shaped 6VM $\Delta=0$
$N=500$
$s=150$
$q=0$
$r=N-s$

Some numerical results, $\alpha=1 / 2$ [Colomo, Sportiello, 2014]

Some numerical results, $\alpha=1 / 2$ [Colomo, Sportiello, 2014]

L-shaped 6VM $\Delta=0$

$$
\begin{aligned}
N & =500 \\
s & =220 \\
q & =0 \\
r & =N-s
\end{aligned}
$$

Some numerical results, $\alpha=1 / 2$ [Colomo, Sportiello, 2014]

Some numerical results, $\alpha=1 / 2$ [Colomo, Sportiello, 2014]

Open problems

- Construct asymptotic expansion for the partition function $Z_{r, s, q}$ of the 6 VM on the L -shaped domain in the thermodynamic limit, extending the results of Bleher, Fokin, Liechty, Bothner for the partition function Z_{N} of the 6 VM with DWBC.
- Derive the arctic curve of the 6 VM on the L-shaped domain.
- Try to extend any of the results about the EFP out the free-fermion point.

