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General motivation
There is a fundamental paradox in the practice of
theoretical physics. We do exact computations on
integrable systems which have very special properties
and then apply the intuition gained to real generic
systems which have none of the special properties
which allowed the exact computations to be carried
out. The ability to do exact computations relies on the
existence of sufficient symmetries which allow the
system to be solved by algebraic methods. Generic
systems do not possess such an algebra andthe
distinction between integrable and non-integrable may
be thought of as the distinction of algebra versus
analysis.
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Specific motivation
1) The discovery in 1999 by Nickel that the Ising
susceptibility has a natural boundary as a function of
temperature.

2) The discovery in 2005 by Fendley, Schoutens and
van Ereten that atz = −1 all the eigenvalues of the
transfer matrix for hard squares are roots of unity.

Neither of these phenomenon is explained by the
renormalization group or field theory methods and
neither are seen in series expansions or in exactly
solved models.
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1. Preliminaries
The hard square (hexagon) lattice gas is defined by a
(occupation) variableσ = 0, 1 at each site of a square
(triangular) lattice with the restriction that no two
adjacent sites can have the valuesσ = 1 (ie. the gas
has nearest neighbor exclusion). Callingg(n;Lv, Lh)
the number of such configurations which hasn
occupied sites the grand partition function on the
finite Lv × Lh lattice is defined as the polynomial
ZLv,Lh

(z) =
∑

n=0 zng(n;Lv, Lh)
These polynomials can be characterized by their zeros
zj as
ZLv,Lh

(z) =
∏

j(1 − z/zj)

where thezj and the degree of the polynomial will
depend on the lattice boundary conditions.
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Physical free energy

The physical free energy is defined for real positive
values of the fugacityz by the limit

F = limLv.Lh→∞(LvLh)
−1 ln ZLv.Lh

(z)

This limit must be independent boundary conditions
and the aspect ratioLv/Lh for thermodynamics to
hold. For values ofz not on the positivez axis the
physical free energy is defined by analytic
continuation into the zero free regions which include
the positivez axis. There is no general theorem
concerning further continuation beyond the zero free
region. It is important to note thatanalytic
continuation does not commute with the
thermodynamic limit.
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Historical review

The free energy for both hard squares and hexagons
has been studied by series methods since the 1960’s.
These studies find two singularities:
For hard squares:
zc = 3.79625517391234(4) zd = −0.119338886(5)
For hard hexagons:
zc = 11.09016 · · · zd = −0.09016 · · ·
The singularity atzd determines the radius of
convergence and atzc there is a phase transition to an
ordered state. In 1980 Baxter computed the hard
hexagon physical free energy exactly for both high
and low density and found that theonly singularities
are at infinity and

zc = 11+5
√

5
2 zd = 11−5

√
5

2 .
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2. Partition function zeros
For both hard squares and hard hexagons we consider
three separate partition functions for three separate
boundary conditions forLv × Lh lattices:

1. Toroidal: ZCC
Lv,Lh

(z)

2. Cylindrical in one direction: ZCF
Lv,Lh

(z), ZFC
Lv,Lh

(z)

3. Free:ZFF
Lv,Lh

(z)

ForLh = Lv = L we have

ZCF
L,L(z) = ZFC

L,L(z)
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Toroidal boundary conditions

The zeros of the partition functionZCC
L,L(z) with

toroidal boundary conditions of hard squares for the
26 × 26 lattice on the left vs. hard hexagons for the
27 × 27 lattice on the right. The red cross iszc.
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Cylindrical boundary conditions

The zeros of the partition functionZFC
L,L(z) = ZCF

L,L(z)

with cylindrical boundary conditions of hard squares
for the40 × 40 lattice on the left vs. hard hexagons
for the39 × 39 lattice on the right. The red cross iszc.
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Free boundary conditions

The zeros of the partition functionZFF
L,L(z) with free

boundary conditions of hard squares for the40 × 40
lattice the left vs. hard hexagons for the39 × 30
lattice on the right. Th red cross iszc.
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Discussion for hexagons

1. For hard hexagons the zeros for all three sets of
boundary conditions are qualitatively the same. They
lie on a few well defined sets of curves.
2. In the thermodynamic limit the zeros pinch thez

axis atzc = (11 + 5
√

5)/2.
3. We know from Baxter that theonly places on the
curve of zeros where the density the low and high
density phases have singularities arezc andzd. There
arenoother singularities on the curves of zeros and
density inboththe low and high density phases can be
analytically continuedbeyondthe zero free region to
the entirez plane.
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Discussion for squares 1

1. The zeros of hard squares are seen to lie in an area.

2. For cylindrical boundary conditions the filling up
of this area proceeds in a remarkable regular fashion.

For the lattices4N × 4N there areN − 1 outer arcs
each of4N points, then there is a narrow arclike area
with close to4N zeros and finally there is an inner
structure that is connected toz = −1. For the
innermost of theN − 1 arcs the zeros appear in well
defined pairs.

For lattices(4N + 2) × (4N + 2) there areN − 1
outer arcs each of4N + 2 points, then a narrow
arclike area which has close to4N + 2 zeros and
finally an inner structure that is connected toz = −1.
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Discussion for squares 2

3.The structure of arcs appears to converge in the
L → ∞ limit to a wedge which hits the positivez axis
at zc. This is distinctly different from the behavior of
hard hexagons. Series expansions confirm that the
leading singularity atzc is the same as the Ising
model. Will a wedge behavior of the zeros produce
further singularities atzc notseen in Ising?

4. It is unknownif in the thermodynamic limit there is
a singularity atz = −1 or if analytic continuation
beyond the zero free region is possible.
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Discussion for squares 3.

5. A combined plot of hard square zeros of
ZCF

L,L(z) = ZFC
L,L(z) for theL × L lattice with

cylindrical boundary conditions for12 ≤ L ≤ 40.
exhibits a mod six effect. There is a distinguished
curve where only pointsL = 6n + 4 lie.

6. Unlike hard hexagons the zeros ofZFF
L,L(z) are

qualitatively different fromZCF
L,L(z)
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3. Transfer matrix equimodular curves
The partition function may also be described by
transfer matrices obtained from local Boltzmann
weights

a a

b b

j

j

j+1

j+1

For hard squares:
W (aj, aj+1; bj, bj+1) = 0 for ajaj+1 = aj+1bj+1 =
bjbj+1 = ajbj = 1

and otherwiseW (aj, aj+1; bj, bj+1) = zbj

For hard hexagonswe also have
W (aj, aj+1; bj, bj+1) = 0 for aj+1bj = 1
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Transfer matrices

The transfer matrixTC(z;Lh) for cylindrical
boundary conditions has matrix elements
TC{b},{a}(z;Lh) =

∏Lh

j=1 W (aj, aj+1; bj, bj+1).

The transfer matrixTF (z;Lh) for free boundary
conditionsis
TF{b},{a}(z;Lh) =
(

∏Lh−2
j=1 W (aj, aj+1; bj, bj+1)

)

WF (aLh−1, aLh
; bLh−1, bLh

)

where
WF (aLh−1, aLh

; bLh−1, bLh
) = zbLh−1+bLh .
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Partition functions

The partition functions are obtained from the transfer
matrices as

ZCC
Lv,Lh

(z) = TrTLv

C (z;Lh).

ZCF
Lv,Lh

(z) = TrTLv

F (z;Lh),

ZFC
Lv,Lh

(z) = 〈vB|TLv−1
C (z;Lh)|v′

B〉,

ZFF
Lv,Lh

(z) = 〈vB|TLv−1
F (z;Lh)|v′

B〉,
with
vB(a1, a2, · · · , aLh

) =
∏Lh

j=1 zaj

v
′
B(b1, b2, · · · , bLh

) = 1
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In terms of the eigenvaluesλk and eigenvectorsvk

ZCC
Lv,Lh

(z) =
∑

k λLv

k;C(z;Lh)

ZCF
Lv,Lh

(z) =
∑

k λLv

k;F (z;Lh)

ZFC
Lv,Lh

(z) =
∑

k λLv−1
k;C (z;Lh) · dC,k

where dC,k = (vB · vC,k)(vC,k · v′
B
)

ZFF
Lv,Lh

(z) =
∑

k λLv−1
k;F (z;Lh) · dF,k

where dF,k = (vB · vF,k)(vF,k · v′
B
)
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Symmetries

For both hard hexagons and hard squaresthe transfer
matrixTC(z;Lh) is invariant under translations and
reflections and therefore momentumP and parity±
are good quantum numbers. Furthermore the
boundary vectorsvB andv

′
B are invariant under

translation and reflection. Consequently thescalar
products(vB · vC,k) and(vC,k · v′

B
) vanish unless

vC,k lies in the sector positive parityP = 0+.

For hard squaresTF (z;Lh) is invariant under
reflection so the eigenvectors in the scalar products
are restricted to positive parity states. However, for
hard hexagonsTF (z;Lh) is not reflection invariant
and all eigenvectors contribute.
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Equimodular curves and partition zeros

In the limit Lv → ∞ with Lh fixed the partition
functions will have zeros on the curves where two (or
more) eigenvalues have equal modulus
|λ1(z;Lh)| = |λ2(z;Lh)|
On this curveλ1/λ2 = eiθ with θ real and forLv large
ZLv,Lh

(z) will have a zero close to the points where
e−θLv = −1. If we defines(z) as the arclength along
the curve at the pointz and define the density of zeros
as
D(s) = limLv→∞

1
Lv(s(zi+1)−s(zi))

we have
2πD(s) = limLv→∞

θ(s(zi+1))−θ(s(zi))
s(zi+1)−s(zi)
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Hard square equimodular curves vs partition

function zeros for 16 × 16 lattices.
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Comparison of hard square equimodular

curves for Lh = 16

On the left the equimodular curves ofTC(z;Lh) in
black with the restriction toP = 0+ in red. On the
right the equimodular curves ofTF (z;Lh) in black
with the restriction to the positive parity sector in red.

Integrability vs. non-integrability – p.24/42



Hard square discussion

For hard squares there arefour different sets of
equimodular curves
TC(z), TF (z), TC0+, TF+(z)
but there are onlythreedifferent sets of partition
function zeros because forLv = Lh = L of the
identityZCF

L,L(z) = ZFC
L,L(z).

This partition function is described by bothTF (z) and
TC0+ and the figure shows that these curves are
dramaticallydifferent.

The curves ofTF are by far the simplest of the four
curves and are in a beautiful 1-to-1 match with the
arclike structure of the zeros.
The small circles in theTF curve also match well with
the circles seen inZFF

L,L(z).
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Hard hexagons

In contrast with hard squares there are only three sets
of equimodular curves:

TC , TC0+ which were computed by us previously (J.
Phys. A 46 (20130 445202)

TF was not previously considered.
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Hard hexagon equimodular curves vs partition

function zeros for 21 × 21 lattices.
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Equimodular curves for large |z|

There are no partition function zeros for largez and
the equimodular curves which extend to infinity for
TC andTF come from asymptotically degenerate
eigenvalues in the ordered phase. For hard squares
there areLh rays forTC andTF . For hard hexagons
there are2Lh/3 rays forTC . For hard hexagons forTF

we have
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4. Behavior for z ≤ zd

Integrability conjecture for hard hexagons forTF .

On the segmentz ≤ zd we previously discovered that
for hard squares there is an unbroken line segment
which is an equimodular curve. On this segment the
discriminant of the characteristic polynomial ofTC

has only double roots where the equimodular
eigenvalues are both real and equal. This is a
non-generic and a property of integrability. We have
found that this also holds forTF . This strongly
suggeststhe conjecture thatTF has the same
integrability properties thatTC has.
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Real gaps for hard squares

In distinct contrast to hard hexagons, hard squares has
segments of−1 ≤ z ≤ zd where the maximum
eigenvalue of bothTC andTF is real and non
nondegenerate. Gaps exist for all cases studied. For
TC andLh ≤ 14

Lh zl(Lh) zr(Lh) gap eigenvalue sign

6 −0.52385422 −0.47481121 4.904301 × 10−2
−

8 −0.30605227 −0.30360084 2.35243 × 10−3
−

10 −0.23737268 −0.23720002 1.7266 × 10−4
−

−0.77929238 −0.73645527 4.283711 × 10−2 +

12 −0.20401756 −0.20400239 1.517 × 10−5
−

−0.49539291 −0.49352002 1.87289 × 10−3 +

14 −0.18464415 −0.18464265 1.50 × 10−6
−

−0.37193269 −0.37180394 1.2875 × 10−4 +

−0.92551046 −0.91949326 6.01721 × 10−3
−
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Real gaps for hard squares

Similarly for TF

Lh zl(Lh) zr(Lh) gap eigenvalue sign

6 −0.4517 −0.4439 7.8 × 10−3
−

8 −0.3004 −0.2999 5 × 10−4
−

10 −0.23987 −0.23983 4 × 10−5
−

−0.6933 −0.6868 6.6 × 10−3 +

12 −0.2079551 −0.2079504 4.6 × 19−6
−

−0.46977 −0.46908 6.9 × 10−4 +

14 −0.18864888 −0.8864835 5.3 × 10−7
−

−0.362749 −0.362722 2.7 × 10−5 +

−0.85376 −0.85315 6.1 × 10−4
−

16 −0.175819604 −0.175819540 6.4 × 10−8
−

−0.3024077 −0.3024052 2.5 × 10−6 +

−0.61069 −0.61049 2.0 × 10−4
−
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Behavior of gaps

1. AsLh → ∞ the gaps inTC(z;Lh) andTF (z;Lh)
approach each other.

2. The number of gaps increases linearly and
smoothly fill the entire segment−1 ≤ z ≤ zd as
Lh → ∞.

3. The width of the gaps decrease (exponentially ?) as
the gap location moves to the right.

4. The size of all gaps decrease (exponentially ?) as
Lh → ∞.

5. We conjecture that asLh → ∞ the gaps form a
dense set of measure zero.
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Glitches and instability for hard squares

The density of zeros for hard hexagons is smooth and
featureless for hard hexagons. However, for hard
squares:

1. The gaps in the equimodular curves gives gaps in
the density of zeros in theLh → ∞ limit and this
persists in the zeros of theL × L lattices in deviations
from smooth behavior which we term glitches.

There is increasing instability in the derivatives
starting atz = −1 and moving to the right as the
order increases.

Integrability vs. non-integrability – p.33/42



Density and its first 3 derivatives for the40 × 40 lattice

A glitch corresponding to a gap atz = −0.752 is
clearly seen in the second and third derivative.
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Third derivatives for L × L lattices.

The solid arrows indicate positions of gaps where the
eigenvalue phase is0, π. At the dotted arrows the
phase is±π/2.
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Density of zeros asz → zd

As z → zd the density diverges asD(z) ∼ (zd − z)−α.

We plotDL(z)/D
(1)
L (z) for L = 40 and compare this

with D(z)/D′(z) ∼ (zd − z)/α with α = 1/6
and a fitting functionf(z) = (zf − z)/αf

with zf = −0.058, αf = 1/0.88.
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Equimodular curves near z = −1
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Plots in the complex fugacity planez nearz = −1 for
Lh = 12 of the equimodular curves of hard square
transfer matrixTC(z;Lh) with P = 0+ (on the left)
andTF (z, Lh) with + parity (on the right) on a scale
which shows the level crossings on thez axis.
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5. Universality and analyticity
z nearzd

At t = z − zd → 0 the free energy of hard hexagons is
given asF =

∑5
n=0 tn5/6Sn(t)

whereSn(t) =
∑∞

k=0 tkak;n are convergent.

Non-integrable hard squares atzd and (and indeed, the
Lee-Yang edge atzLY ) are in the same universality
class as hard hexagons and universality predicts that
asz → zd hard squares will have the same 5
exponents as hard hexagons.

Does universality imply that not only will the
exponents be the same asz → zd but that the
analyticity of hard squares be the same as the
analyticity of hard hexagons in aneighborhood ofzd?
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Possible scenarios

The simplest way analyticity of hard squares can
differ from hard hexagons is if the seriesSn(t) fail to
converge. This can happen ofzd no longer is an
isolated algebraic singularity. This is what happens
for the natural boundary of the Ising susceptibility.
There are several features of the zeros of hard squares
which differ qualitatively from hard hexagons which
need to be investigated.
1. Can the gaps in the equimodular curves and
glitches in the partition function zeros affect the
analyticity forz ≤ zd or do their effects vanish in the
thermodynamic limit?
2. Can the instabilities seen in the density of zeros
nearz = −1 affect the analyticity ?
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Analyticity near z = zc

Nearzc the zeros of hard hexagons lie on a one
dimensional curve. The zeros of hard squares appear
to form a wedge atzc. Can this be made quantitatively
precise and if this is the case can it affect the
analyticity of of hard squares?

The simplest modification would be to allow terms of
the form
(zc − z)n1 lnn2(zc − z)
with n1 andn2 integers. This also happens for the
Ising susceptibility.
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Further questions

1. Why do hard hexagons have a necklace?

2. What is the motion of the right endpoints of the
hard hexagon necklace asL → ∞? Can they reach
zc?

3. Do the zeros in the hard hexagon necklace fill up an
area forL → ∞?

4. What (if any) restrictions are put on a critical point
if it is an endpoint or pinching of a line, as opposed to
a wedge, of zeros?

5. Are any of these considerations relevant to the
natural boundary in the Ising susceptibility?
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6. Conclusion
Theorem:

You cannot understand a paper until you generalize it.

Corollary:

No author understands his/her most recent paper.

This talk is well explained by this corollary.
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